Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

MMD-FUSE: Learning and Combining Kernels for Two-Sample Testing Without Data Splitting

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      University College of London London (UCL); Gatsby Computational Neuroscience Unit; Department of Computer science University College of London (UCL-CS); The Inria London Programme (Inria-London); University College of London London (UCL)-University College of London London (UCL)-Institut National de Recherche en Informatique et en Automatique (Inria); MOdel for Data Analysis and Learning (MODAL); Laboratoire Paul Painlevé (LPP); Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Inria Lille - Nord Europe; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS); Université de Lille-Centre Hospitalier Régional Universitaire Lille (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire Lille (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2023
    • Collection:
      LillOA (HAL Lille Open Archive, Université de Lille)
    • نبذة مختصرة :
      We propose novel statistics which maximise the power of a two-sample test based on the Maximum Mean Discrepancy (MMD), by adapting over the set of kernels used in defining it. For finite sets, this reduces to combining (normalised) MMD values under each of these kernels via a weighted soft maximum. Exponential concentration bounds are proved for our proposed statistics under the null and alternative. We further show how these kernels can be chosen in a data-dependent but permutation-independent way, in a wellcalibrated test, avoiding data splitting. This technique applies more broadly to general permutation-based MMD testing, and includes the use of deep kernels with features learnt using unsupervised models such as auto-encoders. We highlight the applicability of our MMD-FUSE test on both synthetic lowdimensional and real-world high-dimensional data, and compare its performance in terms of power against current state-of-the-art kernel tests.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2306.08777; hal-04156329; https://hal.science/hal-04156329; https://hal.science/hal-04156329/document; https://hal.science/hal-04156329/file/hal.pdf; ARXIV: 2306.08777
    • Rights:
      http://creativecommons.org/licenses/by-nc-sa/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.8861F744