Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Discretized and covariant path integrals for stochastic processes

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Department of Physics, Technion; Laboratoire de Physique Théorique et Hautes Energies (LPTHE); Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS); Institut universitaire de France (IUF); Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.); Laboratoire Interdisciplinaire de Physique Saint Martin d’Hères (LIPhy ); Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA); Matière et Systèmes Complexes (MSC); Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité); ANR-18-CE30-0028,LABS,Grandes déviations, au delà des résultats standards(2018); ANR-20-CE30-0031,THEMA,Thermodynamique de la matière active(2020)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2022
    • Collection:
      Université Grenoble Alpes: HAL
    • نبذة مختصرة :
      Path integrals are a ubiquitous tool in theoretical physics. However, their use is sometimes hindered by the lack of control on various manipulations - such as performing a change of the integration path - one would like to carry out in the light-hearted fashion that physicists enjoy. Similar issues arise in the field of stochastic calculus, which we review to prepare the ground for a proper construction of path integrals. At the level of path integration, and in arbitrary space dimension, we not only report on existing Riemannian geometry-based approaches that render path integrals amenable to the standard rules of calculus, but also bring forth new routes, based on a fully time-discretized approach, that achieve the same goal. We illustrate these various definitions of path integration on simple examples such as the diffusion of a particle on a sphere.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2211.09470; hal-03865795; https://cnrs.hal.science/hal-03865795; https://cnrs.hal.science/hal-03865795/document; https://cnrs.hal.science/hal-03865795/file/2211.09470.pdf; ARXIV: 2211.09470
    • الدخول الالكتروني :
      https://cnrs.hal.science/hal-03865795
      https://cnrs.hal.science/hal-03865795/document
      https://cnrs.hal.science/hal-03865795/file/2211.09470.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.876DC612