Contributors: Nottingham Geospatial Institute (NGI); University of Nottingham, UK (UON); Institut de Recherche de l'Ecole Navale (IRENAV); Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Arts et Métiers Sciences et Technologies; HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM); Littoral, Environnement, Télédétection, Géomatique (LETG - Brest); Littoral, Environnement, Télédétection, Géomatique UMR 6554 (LETG); Université de Caen Normandie (UNICAEN); Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École Pratique des Hautes Études (EPHE); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN); Université de Nantes (UN)-Université de Nantes (UN)-Université de Caen Normandie (UNICAEN); Université de Nantes (UN)-Université de Nantes (UN)
نبذة مختصرة : International audience ; When it comes to characterize the distribution of ‘things’ observed spatially andidentified by their geometries and attributes, the Shannon entropy has been widely used in different domains such as ecology, regional sciences, epidemiology and image analysis. In particular, recent research has taken into account the spatial patterns derived from topological and metric properties in order to propose extensions to the measure of entropy. Based on two different approaches using either distance-ratios or co-occurrences of observed classes, the research developed in this paper introduces several new indices and explores their extensions to the spatio-temporal domains which are derived whilst investigating further their application as global and local indices. Using a multiplicative space-time integration approach either at a macro or micro-level, the approach leads to a series of spatio-temporal entropy indices including from combining co-occurrence and distances-ratios approaches. The framework developed is complementary to the spatio-temporal clustering problem, introducing a more spatial and spatio-temporal structuring perspective using several indices characterizing the distribution of several class instances in space and time. The whole approach is first illustrated on simulated data evolutions of three classes over seven time stamps.Preliminary results are discussed for a study of conflicting maritime activities in the Bay of Brest where the objective is to explore the spatio-temporal patterns exhibited by a categorical variable with six classes, each representing a conflict between two maritime activities.
No Comments.