Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Selectivity for strand-transfer over 3'-processing and susceptibility to clinical resistance of HIV-1 integrase inhibitors are driven by key enzyme-DNA interactions in the active site.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Microbiologie Fondamentale et Pathogénicité (MFP); Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS); Matériaux fonctionnels et photonique (MFP); Laboratoire de Chimie - UMR5182 (LC); École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
      Oxford University Press
    • الموضوع:
      2016
    • Collection:
      HAL Lyon 1 (University Claude Bernard Lyon 1)
    • نبذة مختصرة :
      International audience ; Integrase strand transfer inhibitors (INSTIs) are highly effective against HIV infections. Co-crystal structures of the prototype foamy virus intasome have shown that all three FDA-approved drugs, raltegravir (RAL), elvitegravir and dolutegravir (DTG), act as interfacial inhibitors during the strand transfer (ST) integration step. However, these structures give only a partial sense for the limited inhibition of the 3'-processing reaction by INSTIs and how INSTIs can be modified to overcome drug resistance, notably against the G140S-Q148H double mutation. Based on biochemical experiments with modified oligonucleotides, we demonstrate that both the viral DNA +1 and -1 bases, which flank the 3'-processing site, play a critical role for 3'-processing efficiency and inhibition by RAL and DTG. In addition, the G140S-Q148H (SH) mutant integrase, which has a reduced 3'-processing activity, becomes more active and more resistant to inhibition of 3'-processing by RAL and DTG in the absence of the -1 and +1 bases. Molecular modeling of HIV-1 integrase, together with biochemical data, indicate that the conserved residue Q146 in the flexible loop of HIV-1 integrase is critical for productive viral DNA binding through specific contacts with the virus DNA ends in the 3'-processing and ST reactions. The potency of integrase inhibitors against 3'-processing and their ability to overcome resistance is discussed.
    • Relation:
      hal-04275206; https://hal.science/hal-04275206; https://hal.science/hal-04275206/document; https://hal.science/hal-04275206/file/MFP_NucleicAcidsResearch_2016_Metifiot.pdf
    • الرقم المعرف:
      10.1093/nar/gkw592
    • الدخول الالكتروني :
      https://hal.science/hal-04275206
      https://hal.science/hal-04275206/document
      https://hal.science/hal-04275206/file/MFP_NucleicAcidsResearch_2016_Metifiot.pdf
      https://doi.org/10.1093/nar/gkw592
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.87244E01