Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Energy Transfer and Optical Anisotropy in Semiconducting Polymers

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2019
    • Collection:
      Purdue University Graduate School: Figshare
    • نبذة مختصرة :
      To fully optimize devices for solar energy conversion, a comprehensive understanding of how excitons migrate in materials for solar cell devices is crucial. Understanding the mechanisms behind exciton diffusion and energy transfer will enable the fabrication of highly efficient devices. However to thoroughly study exciton properties, techniques implementing high spatial (nm sizes) and temporal (fs time scales) resolution is required. Herein, we utilize transient absorption microscopy (TAM) with 50 nm spatial resolution and 200 fs temporal resolution to elucidate exciton diffusion in polymeric materials for solar energy conversion. While organic devices are inexpensive and require simpler fabrication procedures than inorganic materials, their device efficiencies often suffer due to their semi-crystalline nature, lending to short diffusion lengths which lead to trap sites and inevitably recombination. It has been demonstrated that achieving long-range exciton diffusion lengths is possible through coherence effects. Coherence can be found in an intermediate electronic coupling region where delocalization and localization compete. To exploit coherence effects, we study polymeric systems in which polymer chains are highly aligned via simple and scalable procedures; semiconducting fibers and solution coated films. In studying the fiber, we first implement polarized photoluminesce (PL) to determine optical ansitropy. From the polarized PL and PL images, it is observed that emission intensities are largest when probing along the transition dipole moment of the polymer. This suggests a type of Förester Resonance Energy Transfer mechanism in which excitons hop from one polymer chain to another. Solution coated polymer films are also studied to understand exciton diffusion as a function of deposition methods. By varying the solution concentration as well as coating rate, we are able to tune the morphology of the film. We observe a strong dependence between diffusion constant and deposition parameters, with diffusion ...
    • Relation:
      https://figshare.com/articles/thesis/Energy_Transfer_and_Optical_Anisotropy_in_Semiconducting_Polymers/8940275
    • الرقم المعرف:
      10.25394/pgs.8940275.v1
    • الدخول الالكتروني :
      https://doi.org/10.25394/pgs.8940275.v1
    • Rights:
      CC BY 4.0
    • الرقم المعرف:
      edsbas.86C6FEBC