Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Weakly-Supervised Semantic Segmentation using Motion Cues

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Apprentissage de modèles à partir de données massives (Thoth ); Inria Grenoble - Rhône-Alpes; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK ); Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ); Microsoft Research - Inria Joint Centre (MSR - INRIA); Institut National de Recherche en Informatique et en Automatique (Inria)-Microsoft Research Laboratory Cambridge-Microsoft Corporation Redmond, Wash.; Google_Research_Award; ERC_Allegro; MSR-Inria; Facebook_gift; European Project: 320559,EC:FP7:ERC,ERC-2012-ADG_20120216,ALLEGRO(2013)
    • بيانات النشر:
      HAL CCSD
      Springer
    • الموضوع:
      2016
    • Collection:
      Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Fully convolutional neural networks (FCNNs) trained on a large number of images with strong pixel-level annotations have become the new state of the art for the semantic segmentation task. While there have been recent attempts to learn FCNNs from image-level weak annotations , they need additional constraints, such as the size of an object , to obtain reasonable performance. To address this issue, we present motion-CNN (M-CNN), a novel FCNN framework which incorporates motion cues and is learned from video-level weak annotations. Our learning scheme to train the network uses motion segments as soft constraints, thereby handling noisy motion information. When trained on weakly-annotated videos, our method outperforms the state-of-the-art approach on the PASCAL VOC 2012 image segmentation benchmark. We also demonstrate that the performance of M-CNN learned with 150 weak video annotations is on par with state-of-the-art weakly-supervised methods trained with thousands of images. Finally, M-CNN substantially out-performs recent approaches in a related task of video co-localization on the YouTube-Objects dataset.
    • Relation:
      info:eu-repo/grantAgreement/EC/FP7/320559/EU/Active large-scale learning for visual recognition/ALLEGRO; hal-01292794; https://hal.archives-ouvertes.fr/hal-01292794; https://hal.archives-ouvertes.fr/hal-01292794v3/document; https://hal.archives-ouvertes.fr/hal-01292794v3/file/mcnn.pdf
    • الرقم المعرف:
      10.1007/978-3-319-46493-0_24
    • الدخول الالكتروني :
      https://hal.archives-ouvertes.fr/hal-01292794
      https://hal.archives-ouvertes.fr/hal-01292794v3/document
      https://hal.archives-ouvertes.fr/hal-01292794v3/file/mcnn.pdf
      https://doi.org/10.1007/978-3-319-46493-0_24
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.860DAE5D