Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Spontaneous imbibition dynamics in two-dimensional porous media: a generalized interacting multi-capillary model

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Géosciences Rennes (GR); Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR); Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS); University of Strathclyde Glasgow; ANR-16-CE06-0001,CO2-3D,Piégeage par solubilité du CO2 dans le sous-sol: rôle des instabilités gravitationnelles 3D(2016)
    • بيانات النشر:
      HAL CCSD
      American Institute of Physics
    • الموضوع:
      2023
    • Collection:
      Université de Rennes 1: Publications scientifiques (HAL)
    • نبذة مختصرة :
      International audience ; The capillary bundle model, wherein the flow dynamics of a porous-medium is predicted from that of a bundle of independent cylindrical tubes/capillaries whose radii are distributed according to the medium's pore size distribution, has been used extensively. The model lacks interaction between the flow channels, thus fails at predicting complex flow configuration, including those involving two-phase flow. We propose here to predict spontaneous imbibition in quasi-two-dimensional (quasi-2D) porous-media from a model based on a planar bundle of interacting capillaries. The imbibition flow dynamics, particularly, breakthrough time, global wetting fluid saturation at breakthrough, and capillary carrying the leading meniscus are governed by the distribution of the capillaries' radii and their spatial arrangement. For an 20 interacting capillary system, the breakthrough time can be 39% smaller than that predicted by the classic, non-interacting, capillary-bundle-model of identical capillary radii distribution. We propose a stochastic approach to use this model of interacting capillaries for quantitative predictions. Using the capillary diameter distribution as that of the pore sizes in the target porous medium, and computing the average behavior of a randomly-chosen samples of such interacting-capillary-bundles with different spatial arrangements, we obtain predictions of the position in time of the bulk saturating front, and of that of the visible leading front, that agree well with measurements taken from the literature. This semi-analytical model is quick to run and provides fast predictions on one-dimensional spontaneous imbibition in porous-media whose porosity structure can reasonably be considered two-dimensional, e.g., paper, thin porous-media in general, or layered aquifers.
    • Relation:
      insu-03895688; https://insu.hal.science/insu-03895688; https://insu.hal.science/insu-03895688/document; https://insu.hal.science/insu-03895688/file/5.0123229.pdf
    • الرقم المعرف:
      10.1063/5.0123229
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.84DDE846