Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Bayesian Optimization for the Inverse Problem in Electrocardiography

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Universiteit Utrecht / Utrecht University Utrecht; University Medical Center Utrecht (UMCU); Mathématiques et Informatique Appliquées (MIA Paris-Saclay); AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Institut des Systèmes Complexes - Paris Ile-de-France (ISC-PIF); École normale supérieure - Cachan (ENS Cachan)-Université Paris 1 Panthéon-Sorbonne (UP1)-École polytechnique (X); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Institut Curie Paris -Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS); Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Université Paris-Saclay; Partly funded by the PlaqAI project from the EWUU Alliance as part of the AI for Health Call.
    • بيانات النشر:
      CCSD
    • الموضوع:
      2023
    • Collection:
      Université Paris 1 Panthéon-Sorbonne: HAL
    • الموضوع:
    • نبذة مختصرة :
      International audience ; The inverse problem in electrocardiography is an ill-posed problem where the objective is to reconstruct the electrical activity of the epicardial surface of the heart, given the electrical activity on the thorax’ surface. In the forward problem, the electrical propagation from heart to thorax is modeled by the volume conductor equation with Dirichlet boundary conditions in the heart’s surface, and null flux coming from the thorax. The inverse problem, however, does not have a unique solution. In order to find solutions for the inverse problem, techniques such as Tikhonov regularization are classically used, but they often deliver unrealistic solutions. As an alternative, we propose a novel approach, where a fixed solution of the volume conductor model with a source in a forward scheme is used to solve the inverse problem. The unknown values for parameters of the fixed solution can be found using optimization techniques. Due to the characteristics of the problem, where each single evaluation of the cost function is expensive, we use a specialized CMA-ES-based Bayesian optimization technique, that can deliver good results even with a reduced number of function evaluations. Experiments show that the proposed approach can deliver improved results for in-silico simulations.
    • الدخول الالكتروني :
      https://hal.science/hal-04358064
      https://hal.science/hal-04358064v1/document
      https://hal.science/hal-04358064v1/file/IEEE_Bayesian_Optimization_for_the_Inverse_Problem_in_Electrocardiography.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.84C15BD1