Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Multilayer Perceptron and Stacked Autoencoder for Internet Traffic Prediction

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Federal University of Uberlândia Uberlândia (UFU); Ching-Hsien Hsu; Xuanhua Shi; Valentina Salapura; TC 10; WG 10.3
    • بيانات النشر:
      HAL CCSD
      Springer
    • الموضوع:
      2014
    • الموضوع:
    • نبذة مختصرة :
      Part 1: Systems, Networks and Architectures ; International audience ; Internet traffic prediction is an important task for many applications, such as adaptive applications, congestion control, admission control, anomaly detection and bandwidth allocation. In addition, efficient methods of resource management can be used to gain performance and reduce costs. The popularity of the newest deep learning methods has been increasing in several areas, but there is a lack of studies concerning time series prediction. This paper compares two different artificial neural network approaches for the Internet traffic forecast. One is a Multilayer Perceptron (MLP) and the other is a deep learning Stacked Autoencoder (SAE). It is shown herein how a simpler neural network model, such as the MLP, can work even better than a more complex model, such as the SAE, for Internet traffic prediction.
    • Relation:
      hal-01403065; https://inria.hal.science/hal-01403065; https://inria.hal.science/hal-01403065/document; https://inria.hal.science/hal-01403065/file/978-3-662-44917-2_6_Chapter.pdf
    • الرقم المعرف:
      10.1007/978-3-662-44917-2_6
    • الدخول الالكتروني :
      https://inria.hal.science/hal-01403065
      https://inria.hal.science/hal-01403065/document
      https://inria.hal.science/hal-01403065/file/978-3-662-44917-2_6_Chapter.pdf
      https://doi.org/10.1007/978-3-662-44917-2_6
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.8448C7EB