Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Synthesis of zeolites from a low-quality colombian kaolin

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Springer Nature
    • الموضوع:
      2016
    • Collection:
      Repositorio Educativo Digital Universidad Autónoma de Occidente (RED UAO)
    • الموضوع:
    • الموضوع:
      Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
    • نبذة مختصرة :
      At present, no production of zeolites is ongoing in Colombia; thus, because of the high demand in the industrial sector, ~2500 tons is imported annually from other countries such as Cuba, Ecuador, Mexico, and the United States. In order minimize the need for these costly imports, the present study sought to evaluate the viability of producing low-silica zeolites through the hydrothermal synthesis of a Colombian kaolin, which contains quartz (40%) and iron-oxide impurities. The kaolin was subjected to a milling process to reduce the particle size to the order of 11 μm, and was heat treated to transform it to metakaolin. Optimization of the synthesis variables (Na2O/SiO2 and H2O/Al2O3 ratios, time, and temperature) was accomplished by applying an experimental design based on the ‘Response Surface Methodology’ technique. The degree of crystallinity and the cation exchange capacity (CEC) were used as response variables. The CEC was determined from the NTC 5167 standard. In addition, the mineralogical composition and the zeolite microstructure were evaluated using techniques such as scanning electron microscopy, X-ray diffraction, and solid state nuclear magnetic resonance spectroscopy. The results indicated that synthetic type A zeolites with a CEC value of 442 cmol(+)/kg can be obtained from the Colombian kaolin, with the following optimal processing conditions: Na2O/SiO2 molar ratio of 2.7, H2O/Al2O3 molar ratio of 150, temperature = 66ºC, and processing time = 8 h. Note that this value (442 cmol(+)/kg) is greater than that reported for an imported commercial zeolite (408 cmol(+)/kg) of the same type, which is currently being used in industry in Colombia. The nationwide availability of the raw material and the quality of the final product present opportunities to make this material available to the Colombian market
    • File Description:
      application/pdf
    • Relation:
      85; 75; Volumen 64; Número 2; Villaquirán-Caicedo, M. A., De Gutiérrez, R. M., Gordillo, M., & Gallego, N. C. (2016). Synthesis of zeolites from a low-quality Colombian kaolin. Clays and Clay Minerals, 64(2), 75-85. DOI:10.1346/CCMN.2016.0640201; Clays And Clay Minerals; Akolekar, D., Chafee, A., and Howe, R.F. (1997) The transformation of kaolin to low-silica X zeolite. Zeolites, 19, 359–265; ASTM D5357-03 (2013) Standard test method for determination of relative crystallinity of zeolite sodium A by X-ray Diffraction; Bobos, I., Duplay, J., Rocha J., and Gomez, C. (2001) Kaolinite to halloysite 7 Å transformation in the kaolin deposit of Sao Vicente de Pereira, Portugal. Clays and Clay Minerals, 49, 596–607; Chandrasekhar, S. and Pramada, P.N. (1999) Investigation on the synthesis of zeolite NaX from Kerala kaolin. Journal of Porous Materials, 6, 283–297; Chandrasekhar, S. and Pramada, P.N. (2008) Microwave assisted synthesis of zeolite A from metakaolin. Microporous and Mesoporous Materials, 108, 152–161; Chandrasekhar, S. and Pramada, P.N. (2001) Sintering behavior of calcium exchanged low silica zeolites synthesized from kaolin. Ceramics International, 27, 105–114; Chandrasekhar, S. and Pramada, P.N. (2004) Kaolin based zeolite Y, a precursor for cordierite ceramics. Applied Clay Science, 27, 187–198; Chandrasekhar, S., Raghavan, P., Sebastian, G., and Damodaran, A.D. (1997) Brightness improvement studies on “kaolin based” zeolite 4A. Applied Clay Science, 12, 221–231; Chunfeng, W., Jiansheng, L., Xia, S., Lianjun, W., and Xiuyun, S. (2009) Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals. Journal of Environmental Sciences, 21, 127–36; Covarrubias, C., García, R, Arriagada, R., Yánez, J., and Garland, M. (2006) Cr(III) exchange on zeolites obtained from kaolin and natural mordenite. Microporous and Mesoporous Materials, 88, 220–231; Covian-Sanchez, I. (1991) Síntesis de zeolitas 13X para uso en detergentes. PhD thesis, Universidad Complutense de Madrid, Madrid, 305 pp; Kuznicki, S.M., Lin, C.C., Wu, L., Yin, H., Danaie, M., and Mitlin, D. (2008) The synthesis of a platy chabazite analog from delaminated metakaolin with the ability to surface template nanosilver particulates. Clays and Clay Minerals, 56, 655–659; Mejía de Gutiérrez, R. and Torres, J. (2003) Puzolana obtenida por activación térmica. Pp. 25–29 in: Memorias III Jornadas Iberoamericanas de Materiales de Construcción, Red Iberoamericana de Rocas y Minerales Industriales, XIII-C - CYTED, San Juan, Argentina; Mendez, I., editor (1980) Metodología de Superficie de Respuesta. Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Mexico D.F., Mexico, pp. 15–17; Miao, Q., Zhou, Z., Yang, J., Lu, J., Yan, S., and Wang, J. (2009) Synthesis of NaA zeolite from kaolin source. Frontiers of Chemical Engineering China, 3, 8–11; Mignoni, M., Petkowicz, D.I., Fernandes, N., and Sibele, B.C. (2008) Synthesis of mordenite using kaolin as Si and Al source. Applied Clay Science, 41, 99–104; Myers, R.H., Montgomery, D.C., and Anderson-Cook, C.M. (2009) Response Surface Methodology: Process and Product Optimization using Designed Experiments. Wiley Series in Probability and Statistics; Novembre, D., Sabatino, B., and Gimeno, D. (2005) Synthesis of Na-A zeolite from 10 Å halloysite and new crystallization kinetic model for the transformation of Na-A into HS zeolite. Clays and Clay Minerals, 53, 28–36; NTC 5167 (2004) Productos para la industria agrícola, productos orgánicos usados como abonos y fertilizantes y enmiendas del suelo. Icontec, Colombia; Park, J., Chan, B., Soo, S., and Chan, H. (2001) Conventional versus ultrasonic synthesis of zeolite 4A from kaolin. Journal of Materials Science Letters, 20, 531–533; Pavlov, M.L., Travkina, O.S., Basimova, R.A., Pavlova, I.N., and Kutepov, B.I. (2009) Binder-free synthesis of highperformance zeolites A and X from kaolin. Petroleum, 49, 36–41; Restrepo, G.M. and Ocampo, G.A. (1996) Sustitución de polifosfatos por zeolitas en detergentes. Revista Facultad Ingeniería Química Universidad de Antioquia, 13, 15–20; Ríos, C.A. and Denver, C.W. (2010) Hydrothermal transformation of kaolinite in the system K2O-SiO2-Al2O3-H2O. DYNA, 77, 55–63; Ríos, C.A. and Williams, C.D. (2008) Synthesis of zeolitic materials from natural clinker: A new alternative for recycling coal combustion by-products. Fuel, 87, 2482–2492; Ríos, C.A., Williams, C.D., and Castellanos, O.M. (2006) Síntesis y caracterización de zeolitas a partir de la activación alcalina de caolinita y subproductos industriales (cenizas volantes y clincker natural) en soluciones alcalinas. BISTUA, 4, 60–71; Ríos, C.A., Denver, C.W., and Castellanos, OM. (2010) Synthesis of zeolite LTA from thermally treated kaolinite. Revista Facultad de Ingenieria Universidad de Antioquia, 53, 30–41; Rocha, J. and Klinowski, J. (1990) 29Si and 27Al magic-anglespinning NMR studies of the thermal transformation of kaolinite. Physics and Chemistry of Minerals, 17, 179–186; San Cristóbal, A.G., Castelló, R., Luengo, M.A., and Vizcayno, C. (2010) Zeolites prepared from calcined and mechanically modified kaolins a comparative study. Applied Clay Science, 49, 239–246; Schneider, J., Cincotto, M.A., and Panepucci, H. (2001) 29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes. Cement and Concrete Research, 31, 993–1001; TA Instruments (2001) The software universal analysis. /?gclid=CKzMpe6MMwCFYEehgod3_cEtg; Tavasoli, M., Kazemian, H., Sadjadi, S., and Tamizifar, M. (2014) Synthesis and characterization of zeolite NaY using kaolin with different synthesis methods. Clay and Clays Minerals, 62, 508–518; Thompson, J.G. and Barron P.F. (1987) Further consideration of the 29Si nuclear magnetic resonance spectrum of kaolinite. Clays and Clay Minerals, 35, 38–42; Torres, J., Mejia de Gutiérrez, R., Castelló, R., and Vizcayno, C. (2011) Análisis comparativo de caolines de diferentes fuentes para la producción de metacaolin. Revista Latinoamericana de Metalurgia y Materiales, 31, 35–43; Zhao, H., Deng, Y., Harsh, J.B., Markus, F., and Boyle, J.S. (2004) Alteration of kaolinite to cancrinite and sodalite by simulated Hanford tank waste: Its impact on cesium retention. Clays and Clay Minerals, 52, 1–13; 1552-8367 (en línea); 0009-8604 (impresa); http://hdl.handle.net/10614/11055; https://doi.org/10.1346/CCMN.2016.0640201
    • الرقم المعرف:
      10.1346/CCMN.2016.0640201
    • Rights:
      Derechos Reservados - Universidad Autónoma de Occidente ; https://creativecommons.org/licenses/by-nc-nd/4.0/ ; info:eu-repo/semantics/OpenAccess ; Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
    • الرقم المعرف:
      edsbas.83263F60