Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Online detection of action start in untrimmed, streaming videos

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions; Universitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo
    • بيانات النشر:
      Springer
    • الموضوع:
      2018
    • Collection:
      Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge
    • نبذة مختصرة :
      This is a post-peer-review, pre-copyedit version of an article published in: Lecture Notes in Computer Sciences, vol. 11207. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-01219-9_33 ; We aim to tackle a novel task in action detection - Online Detection of Action Start (ODAS) in untrimmed, streaming videos. The goal of ODAS is to detect the start of an action instance, with high categorization accuracy and low detection latency. ODAS is important in many applications such as early alert generation to allow timely security or emergency response. We propose three novel methods to specifically address the challenges in training ODAS models: (1) hard negative samples generation based on Generative Adversarial Network (GAN) to distinguish ambiguous background, (2) explicitly modeling the temporal consistency between data around action start and data succeeding action start, and (3) adaptive sampling strategy to handle the scarcity of training data. We conduct extensive experiments using THUMOS'14 and ActivityNet. We show that our proposed methods lead to significant performance gains and improve the state-of-the-art methods. An ablation study confirms the effectiveness of each proposed method. ; Peer Reviewed ; Postprint (author's final draft)
    • File Description:
      18 p.; application/pdf
    • Relation:
      http://openaccess.thecvf.com/content_ECCV_2018/html/Zheng_Shou_Online_Detection_of_ECCV_2018_paper.html; info:eu-repo/grantAgreement/MINECO/2PE/TEC2016-75976-R; Shou, Z., Pan, J., Chan, J., Miyazawa, K., Mansour, H., Vetro, A., Giro, X., Chang, S. Online detection of action start in untrimmed, streaming videos. A: European Conference on Computer Vision. "Computer Vision – ECCV 2018. 15th European Conference, Munich, Germany, September 8-14, 2018, proceedings, part I". Berlín: Springer, 2018, p. 551-568.; https://arxiv.org/abs/1802.06822; http://hdl.handle.net/2117/123701
    • الرقم المعرف:
      10.1007/978-3-030-01219-9_33
    • الدخول الالكتروني :
      http://hdl.handle.net/2117/123701
      https://arxiv.org/abs/1802.06822
      https://doi.org/10.1007/978-3-030-01219-9_33
    • Rights:
      Open Access
    • الرقم المعرف:
      edsbas.83238AD8