Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Maximal Independent Sets for Pooling in Graph Neural Networks

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN); Normandie Université (NU); Université de Caen Normandie (UNICAEN); Equipe Image - Laboratoire GREYC - UMR6072; Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC); Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN); Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN); Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS); Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie); Institut National des Sciences Appliquées (INSA)-Normandie Université (NU); Université de Rouen Normandie (UNIROUEN); Université Le Havre Normandie (ULH); Laboratoire d'Informatique, du Traitement de l'Information et des Systèmes (LITIS); Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN); Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie); Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA); ANR-21-CE23-0025,CoDeGNN,Convolution et Decimation pour les réseaux de neurones sur graphes(2021)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2023
    • Collection:
      Normandie Université: HAL
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Convolutional Neural Networks (CNNs) have enabled major advances in image classification through convolution and pooling. In particular, image pooling transforms a connected discrete lattice into a reduced lattice with the same connectivity and allows reduction functions to consider all pixels in an image. However, there is no pooling that satisfies these properties for graphs. In fact, traditional graph pooling methods suffer from at least one of the following drawbacks: Graph disconnection or overconnection, low decimation ratio, and deletion of large parts of graphs. In this paper, we present three pooling methods based on the notion of maximal independent sets that avoid these pitfalls. Our experimental results confirm the relevance of maximal independent set constraints for graph pooling.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2307.13011; hal-04160860; https://hal.science/hal-04160860; https://hal.science/hal-04160860/document; https://hal.science/hal-04160860/file/Maximal%20Independent%20Sets%20for%20Pooling%20in%20Graph%20Neural%20Networks.pdf; ARXIV: 2307.13011
    • الرقم المعرف:
      10.1007/978-3-031-42795-4_11
    • الدخول الالكتروني :
      https://hal.science/hal-04160860
      https://hal.science/hal-04160860/document
      https://hal.science/hal-04160860/file/Maximal%20Independent%20Sets%20for%20Pooling%20in%20Graph%20Neural%20Networks.pdf
      https://doi.org/10.1007/978-3-031-42795-4_11
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.81D79914