Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

AI-Augmented Multi Function Radar Engineering with Digital Twin: Towards Proactivity

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Thales LAS France; Randomized Optimisation (RANDOPT ); Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP); École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); Thales Research and Technology Palaiseau; THALES France
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2020
    • Collection:
      Université de Rennes 1: Publications scientifiques (HAL)
    • الموضوع:
    • الموضوع:
      Florence, Italy
    • نبذة مختصرة :
      International audience ; Thales new generation digital multi-missions radars, fully-digital and software-defined, like the Sea Fire and Ground Fire radars, benefit from a considerable increase of accessible degrees of freedoms to optimally design their operational modes. To effectively leverage these design choices and turn them into operational capabilities, it is necessary to develop new engineering tools, using artificial intelligence. Innovative optimization algorithms in the discrete and continuous domains, coupled with a radar Digital Twins, allowed construction of a generic tool for "search" mode design (beam synthesis, waveform and volume grid) compliant with the available radar time budget. The high computation speeds of these algorithms suggest tool application in a "Proactive Radar" configuration, which would dynamically propose to the operator, operational modes better adapted to environment, threats and the equipment failure conditions.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2006.12384; hal-02872199; https://hal.science/hal-02872199; https://hal.science/hal-02872199/document; https://hal.science/hal-02872199/file/Digital-Twin%20AI-Augmented%20MFR%20Radar%20Engineering-11-04-2020.pdf; ARXIV: 2006.12384
    • الدخول الالكتروني :
      https://hal.science/hal-02872199
      https://hal.science/hal-02872199/document
      https://hal.science/hal-02872199/file/Digital-Twin%20AI-Augmented%20MFR%20Radar%20Engineering-11-04-2020.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.7D6D4610