Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

ЗАСТОСУВАННЯ МЕТОДІВ ПРОЄКЦІЙНО-ІТЕРАЦІЙНОГО ТИПУ ДО РОЗВ’ЯЗАННЯ ІНТЕГРАЛЬНОГО РІВНЯННЯ ФРЕДГОЛЬМА ДРУГОГО РОДУ ; APPLICATION OF PROJECTION-ITERATION TYPE METHODS TO SOLVING THE FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Kiseleva, E.M.; Hart, L.L.
  • المصدر:
    Питання прикладної математики і математичного моделювання; 2023: Питання прикладної математики та математичного моделювання; 72-82 ; Problems of applied mathematics and mathematical modeling; 2023: Problems of applied mathematics and mathematical modeling; 72-82 ; Вопросы прикладной математики и математического моделирования; 2023: Вопросы прикладной математики и математического моделирования; 72-82 ; 2074-5893 ; 10.15421/32232301
  • نوع التسجيلة:
    article in journal/newspaper
  • اللغة:
    Ukrainian
  • معلومة اضافية
    • بيانات النشر:
      Oles Honchar Dnipropetrovsk National University
    • الموضوع:
      2024
    • Collection:
      Problems of applied mathematics and mathematic modeling (E-Journal)
    • نبذة مختصرة :
      Розглянуті питання застосування комбінованих підходів на основі проєкційних та ітераційних методів – проєкційно-ітеративного і проєкційно-ітераційного – до розв’язання лінійного інтегрального рівняння Фредгольма другого роду. Наведено умови збіжності та оцінки похибки зазначених методів комбінованого типу, алгоритмізовано та програмно реалізовано їх обчислювальні схеми із використанням методу квадратур. Досліджено практичну збіжність та ефективність реалізованих алгоритмів на прикладі розв’язання конкретної задачі. ; The paper studies the issues of applying combined approaches based on projection and iterative methods – of projection-iterative and projection-iteration ones – for solving the linear integral Fredholm equation of the second kind in the space of functions with Lebesgue integrated square. The conditions for convergence and error estimates of these combined methods are given, their computational schemes are algorithmized and implemented in software. The practical convergence and efficiency of the implemented algorithms are studied using the example of solving a specific problem. In the implemented computational schemes, the quadrature method was taken as the projection (approximation) type method. In the projection-iterative scheme, the iteration of approximations to the exact solution occurred due to the refinement of the associated corrections by solving the auxiliary Fredholm integral equation at each step of the iterative process. In the projection-iteration scheme, the iteration of approximations was carried out by applying the method of successive approximations to solving the approximating systems of linear algebraic equations on a sequence of refined grids with a special procedure for generating the initial approximation as the discretization order increases. The research results for this class of integral equations indicate that the considered projection-iterative and projection-iteration computational schemes have certain advantages over the classical quadrature method, both in the quality ...
    • File Description:
      application/pdf
    • Relation:
      https://pm-mm.dp.ua/index.php/pmmm/article/view/377/332; https://pm-mm.dp.ua/index.php/pmmm/article/view/377
    • الرقم المعرف:
      10.15421/322308
    • الدخول الالكتروني :
      https://pm-mm.dp.ua/index.php/pmmm/article/view/377
      https://doi.org/10.15421/322308
    • Rights:
      Copyright (c) 2023 Вопросы прикладной математики и математического моделирования
    • الرقم المعرف:
      edsbas.7D69B397