Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The number of spanning trees of a graph

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.; orcid:0000-0002-0700-5774; orcid:0000-0003-2576-160X; Cangül, İsmail Naci; J-3505-2017; 57189022403
    • بيانات النشر:
      Springer
    • الموضوع:
      2013
    • Collection:
      Açık Erişim@BUU (Bursa Uludağ Üniversitesi)
    • نبذة مختصرة :
      Let G be a simple connected graph of order n, m edges, maximum degree Delta(1) and minimum degree delta. Li et al. (Appl. Math. Lett. 23: 286-290, 2010) gave an upper bound on number of spanning trees of a graph in terms of n, m, Delta(1) and delta: t(G) <= delta (2m-Delta(1)-delta-1/n-3)(n-3). The equality holds if and only if G congruent to K-1,K-n-1, G congruent to K-n, G congruent to K-1 boolean OR (K-1 boolean OR Kn-2) or G congruent to K-n - e, where e is any edge of K-n. Unfortunately, this upper bound is erroneous. In particular, we show that this upper bound is not true for complete graph K-n. In this paper we obtain some upper bounds on the number of spanning trees of graph G in terms of its structural parameters such as the number of vertices (n), the number of edges (m), maximum degree (Delta(1)), second maximum degree (Delta(2)), minimum degree (delta), independence number (alpha), clique number (omega). Moreover, we give the Nordhaus-Gaddum-type result for number of spanning trees. ; Faculty research Fund, Sungkyunkwan University ; Korean Government (2013R1A1A2009341) ; Selçuk Üniversitesi ; Glaucoma Research Foundation ; Hong Kong Baptist University
    • File Description:
      application/pdf
    • ISSN:
      1029-242X
    • Relation:
      TUBİTAK; Makale - Uluslararası Hakemli Dergi; Uludağ Üniversitesi; Journal of Inequalities and Applications; Yurt içi; Yurt dışı; Das, K. C. vd. (2013). “The number of spanning trees of a graph”. Journal of Inequalities and Applications, 2013.; https://doi.org/10.1186/1029-242X-2013-395; http://hdl.handle.net/11452/32849; 000336908800001; 2-s2.0-84894413510; 2013
    • الرقم المعرف:
      10.1186/1029-242X-2013-395
    • الدخول الالكتروني :
      http://hdl.handle.net/11452/32849
      https://doi.org/10.1186/1029-242X-2013-395
    • Rights:
      info:eu-repo/semantics/openAccess ; Atıf Gayri Ticari Türetilemez 4.0 Uluslararası ; http://creativecommons.org/licenses/by-nc-nd/4.0/
    • الرقم المعرف:
      edsbas.7D0C7C93