Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Tropical Geometries and Dynamics of Biochemical Networks Application to Hybrid Cell Cycle Models

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut de Recherche Mathématique de Rennes IRMAR; Laboratoire Paul Painlevé - UMR 8524 LPP; St Petersburg State University SPbU; Département de Mathématiques Montpellier
    • بيانات النشر:
      Elsevier
    • الموضوع:
      2012
    • Collection:
      LillOA (Lille Open Archive - Université de Lille)
    • نبذة مختصرة :
      We use the Litvinov-Maslov correspondence principle to reduce and hybridize networks of biochemical reactions. We apply this method to a cell cycle oscillator model. The reduced and hybridized model can be used as a hybrid model for the cell cycle. We also propose a practical recipe for detecting quasi-equilibrium QE reactions and quasi-steady state QSS species in biochemical models with rational rate functions and use this recipe for model reduction. Interestingly, the QE/QSS invariant manifold of the smooth model and the reduced dynamics along this manifold can be put into correspondence to the tropical variety of the hybridization and to sliding modes along this variety, respectively. ; 284
    • File Description:
      application/octet-stream
    • Relation:
      Electronic Notes in Theoretical Computer Science; http://hdl.handle.net/20.500.12210/120827
    • الدخول الالكتروني :
      https://hdl.handle.net/20.500.12210/120827
    • Rights:
      info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.7CD5DF9E