Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Machine learning prediction of groundwater heights from passive seismic wavefield

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire Chrono-environnement (UMR 6249) (LCE); Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC); Université Bourgogne Franche-Comté COMUE (UBFC)-Université Bourgogne Franche-Comté COMUE (UBFC); Service National d'Observation sur le KARST (SNO Karst); Institut national des sciences de l'Univers (INSU - CNRS); Institut Terre Environnement Strasbourg (ITES); École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS); Ecole et Observatoire des Sciences de la Terre (EOST); Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS); Institut des Sciences de la Terre (ISTerre); Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement IRD : UR219-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA); Biogéosciences UMR 6282 (BGS); Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS); Région Bourgogne-Franche-Comté and OSU THETA
    • بيانات النشر:
      HAL CCSD
      Oxford University Press (OUP)
    • الموضوع:
      2023
    • Collection:
      Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
    • نبذة مختصرة :
      International audience ; Most of water reservoirs are underground and therefore challenging to monitor. This is particularly the case of karst aquifers which knowledge is mostly based on sparse spatial and temporal observations. In this study, we propose a new approach, based on a supervised machine learning algorithm, the Random Forests, and continuous seismic noise records, that allows the prediction of the underground river water height. The study site is a karst aquifer in the Jura Mountains (France). An underground river is accessible through an artificial shaft and is instrumented by a hydrological probe. The seismic noise generated by the river is recorded by two broadband seismometers, located underground (20 m depth) and at the surface. The algorithm succeeds in predicting water height thanks to signal energy features. Even weak river-induced noise such as recorded at the surface can be detected and used by the algorithm. Its efficiency, expressed by the Nash–Sutcliffe criterion, is above 95 per cent and 53 per cent for data from the underground and surface seismic stations, respectively.
    • Relation:
      hal-04100453; https://u-bourgogne.hal.science/hal-04100453; https://u-bourgogne.hal.science/hal-04100453/document; https://u-bourgogne.hal.science/hal-04100453/file/ggad160.pdf
    • الرقم المعرف:
      10.1093/gji/ggad160
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.7C72BAE8