Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

From individual-based epidemic models to McKendrick-von Foerster PDEs: a guide to modeling and inferring COVID-19 dynamics

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Université du Québec à Montréal = University of Québec in Montréal (UQAM); Centre interdisciplinaire de recherche en biologie (CIRB); Labex MemoLife; École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Collège de France (CdF (institution))-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris); Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS); Infection, Anti-microbiens, Modélisation, Evolution (IAME (UMR_S_1137 / U1137)); Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité)-Université Sorbonne Paris Nord; Westfälische Wilhelms-Universität Münster = University of Münster (WWU); Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB); Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC); Université Bourgogne Franche-Comté COMUE (UBFC)-Université Bourgogne Franche-Comté COMUE (UBFC); Institut de Systématique, Evolution, Biodiversité (ISYEB ); Muséum national d'Histoire naturelle (MNHN)-École Pratique des Hautes Études (EPHE); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA); University of California Berkeley (UC Berkeley); University of California (UC); Temple University Philadelphia; Pennsylvania Commonwealth System of Higher Education (PCSHE); Laboratoire de Physique Théorique de la Matière Condensée (LPTMC); Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS); Institut de biologie de l'ENS Paris (IBENS); Département de Biologie - ENS Paris; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS); University of Vienna Vienna
    • بيانات النشر:
      HAL CCSD
      Springer
    • الموضوع:
      2022
    • Collection:
      Université Paris 13: HAL
    • نبذة مختصرة :
      International audience ; We present a unifying, tractable approach for studying the spread of viruses causing complex diseases requiring to be modeled using a large number of types (e.g., infective stage, clinical state, risk factor class). We show that recording each infected individual’s infection age, i.e., the time elapsed since infection, has three benefits. First, regardless of the number of types, the age distribution of the population can be described by means of a first-order, one-dimensional partial differential equation (PDE) known as the McKendrick-von Foerster equation. The frequency of type i is simply obtained by integrating the probability of being in state i at a given age against the age distribution. This representation induces a simple methodology based on the additional assumption of Poisson sampling to infer and forecast the epidemic. We illustrate this technique using French data from the COVID-19 epidemic. Second, our approach generalizes and simplifies standard compartmental models using high-dimensional systems of ordinary differential equations (ODEs) to account for disease complexity. We show that such models can always be rewritten in our framework, thus, providing a low-dimensional yet equivalent representation of these complex models. Third, beyond the simplicity of the approach, we show that our population model naturally appears as a universal scaling limit of a large class of fully stochastic individual-based epidemic models, where the initial condition of the PDE emerges as the limiting age structure of an exponentially growing population starting from a single individual
    • Relation:
      info:eu-repo/semantics/altIdentifier/pmid/36169721; hal-03835684; https://hal.science/hal-03835684; https://hal.science/hal-03835684/document; https://hal.science/hal-03835684/file/Foutel%20Rodier%20et%20al.%20J%20Math%20Biol%202022.pdf; PUBMED: 36169721
    • الرقم المعرف:
      10.1007/s00285-022-01794-4
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.7C1433E