نبذة مختصرة : The use of machine learning techniques in classification problems has been shown to be useful in many applications. In particular, they have become increasingly popular in land cover mapping applications in the last decade. These maps often play an important role in environmental science applications as they can act as inputs within wider modelling chains and in estimating how the overall prevalence of particular land cover types may be changing. As with any model, land cover maps built using machine learning techniques are likely to contain misclassifications and hence create a degree of uncertainty in the results derived from them. In order for policy makers, stakeholder and other users to have trust in such results, such uncertainty must be accounted for in a quantifiable and reliable manner. This is true even for highly accurate classifiers. However, the black-box nature of many machine learning techniques makes common forms of uncertainty quantitation traditionally seen in process modelling almost impossible to apply in practice. Hence, one must often rely on independent test samples for uncertainty quantification when using machine learning techniques, as these do not rely on any assumptions for the how a classifier is built. The issue with test samples though is that they can be expensive to obtain, even in situations where large data sets for building the classifier are relatively cheap. This is because tests samples are subject to much stricter criteria on how they are collected as they rely on formalised statistical inference methods to quantify uncertainty. In comparison, the goal of a classifier is to create a series of rules that is able to separate classes well. Hence, there is much more flexibility in how we may collect samples for the purpose of training classifiers. This means that in practice, one must collect test samples of sufficient size so that uncertainties can be reduced to satisfactory levels without relying overly large (and therefore expensive) sample sizes. However, the task of ...
No Comments.