Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Produit Beta-Gamma et régularité du signe

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire Paul Painlevé - UMR 8524 LPP
    • الموضوع:
      2025
    • Collection:
      LillOA (Lille Open Archive - Université de Lille)
    • نبذة مختصرة :
      We study the total positivity of the multiplicative convolution kernel T associated with the independent product of two random variables ${\bf B}(a,b)$ and ${\bf \Gamma}(c).$ This kernel is totally positive of infinite order if $b$ or $d = a+b -c$ are integers. Otherwise the sign-regularity of T has always a finite order, which is here computed. More precisely, for every $n\ge 1$ it is shown that T is totally positive of order $n + 1$ if and only if $(d,b)$ lies above a certain stairway ${\mathcal E}_n$ plotted in the upper half-plane. This stairway also characterizes the sign-invariance of several determinants associated with the confluent hypergeometric function of the second kind.
    • File Description:
      application/octet-stream
    • Relation:
      http://hdl.handle.net/20.500.12210/120823
    • الدخول الالكتروني :
      https://hdl.handle.net/20.500.12210/120823
    • Rights:
      info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.7BB81B87