Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Detection of Actinic Keratosis Skin Cancer Using Gray Level Co-occurrence Matrix Texture Extraction and Color Extraction With Support Vector Machine Classification ; Peningkatan Identifikasi Kanker Kulit Actinic Keratosis Menggunakan Kombinasi Sistem Ekstraksi dengan Klasifikasi Support Vector Machine

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Diponegoro University
    • الموضوع:
      2023
    • Collection:
      Universitas Diponegoro: Undip E-Journal System (UEJS) Portal
    • نبذة مختصرة :
      Nowadays, humans tend to carry out activities during the day, both indoors and outdoors. Activities carried out outdoors cause human skin to often receive direct exposure to sunlight, which contains ultraviolet (UV) rays. Direct exposure to UV rays on the skin will harm the skin's health, which is the covering of the human body. Harmful effects on the skin usually include the skin becoming dark and dull, burns, and even causes cancer. One of the skin cancers that may appear on human skin is Actinic Keratosis (AK) cancer. AK cancer is a type of cancer that is classified as benign and can be cured with medical help. However, if this cancer is not caught early, it can become Squamous Cell Carcinoma (SCC), a type of malignant cancer. This research aims to design a system for identifying AK cancer types using color and texture feature extraction. RGB color feature extraction is obtained from image color segmentation and RGB values. The Gray Level Co-occurrence Matrix (GLCM) method is used to determine the texture of the skin cancer. Identification is carried out by a classification process using a Support Vector Machine (SVM), which can recognize the type of AK cancer. This research uses three classification methods: classification with color extraction, classification with texture extraction, and classification with color and texture extraction. Research shows that the highest level of accuracy in cancer recognition reaches 96% by combining color and texture extraction results as classification determinants. So, the system designed has succeeded in recognizing the type of AK cancer early on. ; Pada masa sekarang manusia cenderung melakukan aktivitas pada siang hari, yang dilakukan baik di dalam maupun di luar ruangan. Aktivitas yang dilakukan di luar ruangan menyebabkan kulit manusia sering mendapatkan paparan langsung sinar matahari yang mengandung sinar ultraviolet (UV). Paparan langsung sinar UV ke bagian kulit akan berdampak buruk bagi kesehatan kulit, yang merupakan pelapis tubuh manusia. Dampak buruk terhadap ...
    • File Description:
      application/pdf
    • Relation:
      https://ejournal.undip.ac.id/index.php/teknik/article/view/44895/24581; https://ejournal.undip.ac.id/index.php/teknik/article/downloadSuppFile/44895/10212; https://ejournal.undip.ac.id/index.php/teknik/article/view/44895
    • الرقم المعرف:
      10.14710/teknik.v44i2.44895
    • الدخول الالكتروني :
      https://ejournal.undip.ac.id/index.php/teknik/article/view/44895
      https://doi.org/10.14710/teknik.v44i2.44895
    • Rights:
      Copyright (c) 2023 TEKNIK ; https://creativecommons.org/licenses/by-sa/4.0
    • الرقم المعرف:
      edsbas.7A91BF94