Contributors: National University of Singapore (NUS); Scool (Scool); Inria Lille - Nord Europe; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL); Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS); Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL); Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS); Institut National de Recherche en Informatique et en Automatique (Inria); P. Karmakar acknowledges supports of the programme DesCartes and the National Research Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme.; ANR-22-CE23-0003,REPUBLIC,REPUBLIC: Vers l'IA responsable avec l'apprentissage par renforcement sous contraintes(2022); ANR-21-CHR4-0007,CausalXRL,Causal eXplanations in Reinforcement Learning(2021)
نبذة مختصرة : Presented in the Privacy-Preserving AI (PPAI) workshop at AAAI 2023 as a spotlight talk and published in NeurIPS 2023. ; International audience ; We study design of black-box model extraction attacks that can send minimal number of queries from a publicly available dataset to a target ML model through a predictive API with an aim to create an informative and distributionally equivalent replica of the target. First, we define distributionally equivalent and Max-Information model extraction attacks, and reduce them into a variational optimisation problem. The attacker sequentially solves this optimisation problem to select the most informative queries that simultaneously maximise the entropy and reduce the mismatch between the target and the stolen models. This leads to an active sampling-based query selection algorithm, Marich, which is model-oblivious. Then, we evaluate Marich on different text and image data sets, and different models, including CNNs and BERT. Marich extracts models that achieve $\sim 60-95\%$ of true model's accuracy and uses $\sim 1,000 - 8,500$ queries from the publicly available datasets, which are different from the private training datasets. Models extracted by Marich yield prediction distributions, which are $\sim 2-4\times$ closer to the target's distribution in comparison to the existing active sampling-based attacks. The extracted models also lead to $84-96\%$ accuracy under membership inference attacks. Experimental results validate that Marich is query-efficient, and capable of performing task-accurate, high-fidelity, and informative model extraction.
No Comments.