Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Inferring physical properties of galaxies from their emission-line spectra

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Ucci, Graziano; Ferrara, Andrea; Gallerani, Simona; Pallottini, Andrea
    • بيانات النشر:
      Oxford University Press and Royal Astronomical Society
    • الموضوع:
      2017
    • Collection:
      Scuola Normale Superiore: CINECA IRIS
    • نبذة مختصرة :
      We present a new approach based on Supervised Machine Learning algorithms to infer key physical properties of galaxies (density, metallicity, column density and ionization parameter) from their emission-line spectra. We introduce a numerical code (called GAME, GAlaxy Machine learning for Emission lines) implementing this method and test it extensively. GAME delivers excellent predictive performances, especially for estimates of metallicity and column densities. We compare GAME with the most widely used diagnostics (e.g. R23, [NII] λ6584/Hα indicators) showing that it provides much better accuracy and wider applicability range. GAME is particularly suitable for use in combination with Integral Field Unit spectroscopy, both for rest-frame optical/UV nebular lines and far-infrared/sub-millimeter lines arising from photodissociation regions. Finally, GAME can also be applied to the analysis of synthetic galaxy maps built from numerical simulations.
    • Relation:
      info:eu-repo/semantics/altIdentifier/wos/WOS:000393782000081; volume:465; firstpage:1144; lastpage:1156; numberofpages:13; journal:MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY; http://hdl.handle.net/11384/64691; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85014788089
    • الرقم المعرف:
      10.1093/mnras/stw2836
    • الدخول الالكتروني :
      http://hdl.handle.net/11384/64691
      https://doi.org/10.1093/mnras/stw2836
    • Rights:
      info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.782507AB