Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Multivariate selfsimilarity: Multiscale eigenstructures for selfsimilarity parameter estimation

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire de Physique de l'ENS Lyon (Phys-ENS); École normale supérieure de Lyon (ENS de Lyon)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS); Tulane University; CoMputational imagINg anD viSion (IRIT-MINDS); Institut de recherche en informatique de Toulouse (IRIT); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI); Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT); Centre National de la Recherche Scientifique (CNRS); Département de Physique ENS Lyon; École normale supérieure de Lyon (ENS de Lyon)-Université de Lyon; Simons Foundation collaboration (no 714014); PhD Grant DGA/AID (no 01D20019023); ANR-18-CE45-0007,MUTATION,Analyse multifractale multidimensionnelle : Théorie et applications en imagerie échographique du cancer de pancréas(2018)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2023
    • Collection:
      Université Toulouse 2 - Jean Jaurès: HAL
    • الموضوع:
    • نبذة مختصرة :
      p. 1-14 ; International audience ; Scale-free dynamics, formalized by selfsimilarity, provides a versatile paradigm massively and ubiquitously used to model temporal dynamics in real-world data. However, its practical use has mostly remained univariate so far. By contrast, modern applications often demand multivariate data analysis. Accordingly, models for multivariate selfsimilarity were recently proposed. Nevertheless, they have remained rarely used in practice because of a lack of available robust estimation procedures for the vector of selfsimilarity parameters. Building upon recent mathematical developments, the present work puts forth an efficient estimation procedure based on the theoretical study of the multiscale eigenstructure of the wavelet spectrum of multivariate selfsimilar processes. The estimation performance is studied theoretically in the asymptotic limits of large scale and sample sizes, and computationally for finite-size samples. As a practical outcome, a fully operational and documented multivariate signal processing estimation toolbox is made freely available and is ready for practical use on real-world data. Its potential benefits are illustrated in epileptic seizure prediction from multi-channel EEG data.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2311.03247; hal-04273362; https://hal.science/hal-04273362; https://hal.science/hal-04273362/document; https://hal.science/hal-04273362/file/main.pdf; ARXIV: 2311.03247
    • الدخول الالكتروني :
      https://hal.science/hal-04273362
      https://hal.science/hal-04273362/document
      https://hal.science/hal-04273362/file/main.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.774BFF1E