Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The intrinsic formality of $E_n$-operads

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire Paul Painlevé - UMR 8524 (LPP); Université de Lille-Centre National de la Recherche Scientifique (CNRS); Institut für Mathematik Zürich; Universität Zürich Zürich = University of Zurich (UZH); ANR-11-LABX-0007,CEMPI,Centre Européen pour les Mathématiques, la Physique et leurs Interactions(2011)
    • بيانات النشر:
      HAL CCSD
      European Mathematical Society
    • الموضوع:
      2020
    • Collection:
      LillOA (HAL Lille Open Archive, Université de Lille)
    • نبذة مختصرة :
      International audience ; We establish that En-operads satisfy a rational intrinsic formality theorem for n ≥ 3. We gain our results in the category of Hopf cooperads in cochain graded dg-modules which defines a model for the rational homotopy of operads in spaces. We consider, in this context, the dual cooperad of the n-Poisson operad Pois c n , which represents the cohomology of the operad of little n-discs Dn. We assume n ≥ 3. We explicitly prove that a Hopf cooperad in cochain graded dg-modules K is weakly-equivalent (quasi-isomorphic) to Pois c n as a Hopf cooperad as soon as we have an isomorphism at the cohomology level H * (K) ≃ Pois c n when 4 ∤ n. We just need the extra assumption that K is equipped with an involutive isomorphism mimicking the action of a hyperplane reflection on the little n-discs operad in order to extend this formality statement in the case 4 | n. We deduce from these results that any operad in simplicial sets P which satisfies the relation H * (P, Q) ≃ Pois c n in rational cohomology (and an analogue of our extra involution requirement in the case 4 | n) is rationally weakly equivalent to an operad in simplicial sets L G•(Pois c n) which we determine from the n-Poisson cooperad Pois c n. We also prove that the morphisms ι : Dm → Dn, which link the little discs operads together, are rationally formal as soon as nm ≥ 2. These results enable us to retrieve the (real) formality theorems of Kontsevich by a new approach, and to sort out the question of the existence of formality quasi-isomorphisms defined over the rationals (and not only over the reals) in the case of the little discs operads of dimension n ≥ 3.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/1503.08699; hal-04391111; https://hal.science/hal-04391111; https://hal.science/hal-04391111/document; https://hal.science/hal-04391111/file/1503.08699v5.pdf; ARXIV: 1503.08699
    • الرقم المعرف:
      10.4171/JEMS/961
    • الدخول الالكتروني :
      https://hal.science/hal-04391111
      https://hal.science/hal-04391111/document
      https://hal.science/hal-04391111/file/1503.08699v5.pdf
      https://doi.org/10.4171/JEMS/961
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.768707C3