Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A structured nonnegative matrix factorization for source separation

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire Traitement et Communication de l'Information (LTCI); Télécom ParisTech-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS); Laboratoire des signaux et systèmes (L2S); Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS); Modelling brain structure, function and variability based on high-field MRI data (PARIETAL); Service NEUROSPIN (NEUROSPIN); Université Paris-Saclay-Institut des Sciences du Vivant Frédéric JOLIOT (JOLIOT); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut des Sciences du Vivant Frédéric JOLIOT (JOLIOT); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Inria Saclay - Ile de France; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); labROSA; Columbia University New York; H. Papadopoulos is supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework ProgrammeThis work was supported by a grant from DIGITEO
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2015
    • Collection:
      HAL-CEA (Commissariat à l'énergie atomique et aux énergies alternatives)
    • الموضوع:
    • الموضوع:
      Nice, France
    • نبذة مختصرة :
      International audience ; In this paper, we propose a new unconstrained nonnegative matrix factorization method designed to utilize the multilayer structure of audio signals to improve the quality of the source separation. The tonal layer is sparse in frequency and temporally stable, while the transient layer is composed of short term broadband sounds. Our method has a part well suited for tonal extraction which decomposes the signals in sparse orthogonal components, while the transient part is represented by a regular nonnegative matrix factorization decomposition. Experiments on synthetic and real music data in a source separation context show that such decomposition is suitable for audio signal. Compared with three state-of-the-art har-monic/percussive decomposition algorithms, the proposed method shows competitive performances. Index Terms— nonnegative matrix factorization, projec-tive nonnegative matrix factorization, audio source separation , harmonic/percussive decomposition.
    • Relation:
      hal-01199631; https://hal.science/hal-01199631; https://hal.science/hal-01199631/document; https://hal.science/hal-01199631/file/EUSIPCO.pdf
    • الدخول الالكتروني :
      https://hal.science/hal-01199631
      https://hal.science/hal-01199631/document
      https://hal.science/hal-01199631/file/EUSIPCO.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.760E3575