Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The Ir-OOOO-Ir Transition State and the Mechanism of the Oxygen Evolution Reaction on IrO 2 (110)

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM); Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM); Université de Montpellier (UM); Réseau sur le stockage électrochimique de l'énergie (RS2E); Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP); Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)
    • بيانات النشر:
      CCSD
      Royal Society of Chemistry
    • الموضوع:
      2022
    • Collection:
      ENSCP Chimie ParisTech (Ecole Nationale Supérieure de Chimie de Paris): Archive ouverte HAL
    • نبذة مختصرة :
      International audience ; Carefully assessing the energetics along the pathway of the oxygen evolution reaction (OER), our computational study reveals that the "classical" OER mechanism on the (110) surface of iridium dioxide (IrO 2) must be reconsidered. We find that the OER follows a bi-nuclear mechanism with adjacent top surface oxygen atoms as fixed adsorption sites, whereas the iridium atoms underneath play an indirect role and maintain their saturated 6-fold oxygen coordination at all stages of the reaction. The oxygen molecule is formed, via an Ir-OOOO-Ir transition state, by association of the outer oxygen atoms of two adjacent Ir-OO surface entities, leaving two intact Ir-O entities at the surface behind. This is drastically different from the commonly considered mono-nuclear mechanism where the O 2 molecule evolves by splitting of the Ir-O bond in an Ir-OO entity. We regard the rather weak reducibility of crystalline IrO 2 as the reason for favoring the novel pathway, which allows the Ir-O bonds to remain stable and explains the outstanding stability of IrO 2 under OER conditions. The establishment of surface oxygen atoms as fixed electrocatalytically active sites on a transitionmetal oxide represents a paradigm shift for the understanding of water oxidation electrocatalysis, and it reconciles the theoretical understanding of the OER mechanism on iridium oxide with recently reported experimental results from operando X-ray spectroscopy. The novel mechanism provides an efficient OER pathway on a weakly reducible oxide, defining a new strategy towards the design of advanced OER catalysts with combined activity and stability.
    • الرقم المعرف:
      10.1039/D2EE00158F
    • الدخول الالكتروني :
      https://hal.science/hal-03835182
      https://hal.science/hal-03835182v1/document
      https://hal.science/hal-03835182v1/file/2022_EES.pdf
      https://doi.org/10.1039/D2EE00158F
    • Rights:
      http://creativecommons.org/licenses/by-nc/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.746FB5A6