Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A predictive computational model of the dynamic 3D interphase yeast nucleus.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      GDR 3536; Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS); Imagerie et Modélisation; Institut Pasteur Paris (IP)-Centre National de la Recherche Scientifique (CNRS); Cellule Pasteur UPMC; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Pasteur Paris (IP); Cellule Pasteur; Université Paris Diderot - Paris 7 (UPD7)-PRES Sorbonne Paris Cité; Laboratoire de Physique Théorique de la Matière Condensée (LPTMC); Régulation spatiale des Génomes - Spatial Regulation of Genomes; This work was funded by Institut Pasteur, Agence Nationale de la Recherche (grants ANR-09-PIRI-0024-1 and ANR-11-MONU-020-02), and Fondation pour la Recherche Médicale (Equipe FRM).; ANR-09-PIRI-0024,Chromodyn(2009); ANR-11-MONU-0020,ProbAlg,Algorithmes efficients pour modèles réalistes à grand échelle : développements fondamentaux et applications(2011)
    • بيانات النشر:
      HAL CCSD
      Elsevier
    • الموضوع:
      2012
    • نبذة مختصرة :
      International audience ; BackgroundDespite the absence of internal membranes, the nucleus of eukaryotic cells is spatially organized, with chromosomes and individual loci occupying dynamic, but nonrandom, spatial positions relative to nuclear landmarks and to each other. These positional preferences correlate with gene expression and DNA repair, recombination, and replication. Yet the principles that govern nuclear organization remain poorly understood and detailed predictive models are lacking.ResultsWe present a computational model of dynamic chromosome configurations in the interphase yeast nucleus that is based on first principles and is able to statistically predict the positioning of any locus in nuclear space. Despite its simplicity, the model agrees with extensive previous and new measurements on locus positioning and with genome-wide DNA contact frequencies. Notably, our model recapitulates the position and morphology of the nucleolus, the observed variations in locus positions, and variations in contact frequencies within and across chromosomes, as well as subchromosomal contact features. The model is also able to correctly predict nuclear reorganization accompanying a reduction in ribosomal DNA transcription, and sites of chromosomal rearrangements tend to occur where the model predicted high contact frequencies.ConclusionsOur results suggest that large-scale yeast nuclear architecture can be largely understood as a consequence of generic properties of crowded polymers rather than of specific DNA-binding factors and that configurations of chromosomes and DNA contacts are dictated mainly by genomic location and chromosome lengths. Our model provides a quantitative framework to understand and predict large-scale spatial genome organization and its interplay with functional processes.
    • Relation:
      info:eu-repo/semantics/altIdentifier/pmid/22940469; pasteur-01420017; https://pasteur.hal.science/pasteur-01420017; https://pasteur.hal.science/pasteur-01420017/document; https://pasteur.hal.science/pasteur-01420017/file/Wong%20et%20al%202012%20Curr%20Bio.pdf; PUBMED: 22940469
    • الرقم المعرف:
      10.1016/j.cub.2012.07.069
    • الدخول الالكتروني :
      https://pasteur.hal.science/pasteur-01420017
      https://pasteur.hal.science/pasteur-01420017/document
      https://pasteur.hal.science/pasteur-01420017/file/Wong%20et%20al%202012%20Curr%20Bio.pdf
      https://doi.org/10.1016/j.cub.2012.07.069
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.72D0ACCB