Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

End-to-End Deep Multi-Score Model for No-Reference Stereoscopic Image Quality Assessment

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Université Lumière - Lyon 2 - Institut de la communication (UL2 ICOM); Université Lumière - Lyon 2 (UL2); Laboratoire pluridisciplinaire de recherche en ingénierie des systèmes, mécanique et énergétique (PRISME); Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)
    • بيانات النشر:
      HAL CCSD
      IEEE
    • الموضوع:
      2022
    • Collection:
      Université de Lyon: HAL
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Deep learning-based quality metrics have recently given significant improvement in Image Quality Assessment (IQA). In the field of stereoscopic vision, information is evenly distributed with slight disparity to the left and right eyes. However, due to asymmetric distortion, the objective quality ratings for the left and right images would differ, necessitating the learning of unique quality indicators for each view. Unlike existing stereoscopic IQA measures which focus mainly on estimating a global human score, we suggest incorporating left, right, and stereoscopic objective scores to extract the corresponding properties of each view, and so forth estimating stereoscopic image quality without reference. Therefore, we use a deep multi-score Convolutional Neural Network (CNN). Our model has been trained to perform four tasks: First, predict the left view's quality. Second, predict the quality of the left view. Third and fourth, predict the quality of the stereo view and global quality, respectively, with the global score serving as the ultimate quality. Experiments are conducted on Waterloo IVC 3D Phase 1 and Phase 2 databases. The results obtained show the superiority of our method when comparing with those of the state-of-the-art. The implementation code can be found at: https://github.com/o-messai/multiscore-SIQA
    • Relation:
      hal-03871704; https://hal.science/hal-03871704; https://hal.science/hal-03871704/document; https://hal.science/hal-03871704/file/2211.01374.pdf
    • الرقم المعرف:
      10.1109/ICIP46576.2022.9897616
    • الدخول الالكتروني :
      https://hal.science/hal-03871704
      https://hal.science/hal-03871704/document
      https://hal.science/hal-03871704/file/2211.01374.pdf
      https://doi.org/10.1109/ICIP46576.2022.9897616
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.718E7E33