Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Sums of Kloosterman sums in arithmetic progressions, and the error term in the dispersion method

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut de Mathématiques de Marseille (I2M); Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
    • بيانات النشر:
      HAL CCSD
      London Mathematical Society
    • الموضوع:
      2017
    • Collection:
      Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
    • نبذة مختصرة :
      International audience ; We prove a bound for quintilinear sums of Kloosterman sums, with congruence conditions on the "smooth" summation variables. This generalizes classical work of Deshouillers and Iwaniec, and is key to obtaining power-saving error terms in applications, notably the dispersion method. As a consequence, assuming the Riemann hypothesis for Dirichlet $L$-functions, we prove a power-saving error term in the Titchmarsh divisor problem of estimating $\sum_{p\leq x}\tau(p-1)$. Unconditionally, we isolate the possible contribution of Siegel zeroes, showing it is always negative. Extending work of Fouvry and Tenenbaum, we obtain power-saving in the asymptotic formula for $\sum_{n\leq x}\tau_k(n)\tau(n+1)$, reproving a result announced by Bykovski\u{i} and Vinogradov by a different method. The gain in the exponent is shown to be independent of $k$ if a generalized Lindel\"of hypothesis is assumed.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/1504.05549; hal-01302604; https://hal.archives-ouvertes.fr/hal-01302604; https://hal.archives-ouvertes.fr/hal-01302604/document; https://hal.archives-ouvertes.fr/hal-01302604/file/1504.05549v3.pdf; ARXIV: 1504.05549
    • الرقم المعرف:
      10.1112/plms.12022
    • الدخول الالكتروني :
      https://hal.archives-ouvertes.fr/hal-01302604
      https://hal.archives-ouvertes.fr/hal-01302604/document
      https://hal.archives-ouvertes.fr/hal-01302604/file/1504.05549v3.pdf
      https://doi.org/10.1112/plms.12022
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.7159EC06