Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Unsupervised Performance Analysis of 3D Face Alignment with a Statistically Robust Confidence Test

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Speech Modeling for Facilitating Oral-Based Communication (MULTISPEECH); Inria Nancy - Grand Est; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD); Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA); Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA); Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS); Vers des robots à l’intelligence sociale au travers de l’apprentissage, de la perception et de la commande (ROBOTLEARN); Inria Grenoble - Rhône-Alpes; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Grenoble Alpes (UGA); ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019); European Project: 871245,H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT),SPRING(2020)
    • بيانات النشر:
      HAL CCSD
      Elsevier
    • الموضوع:
      2024
    • Collection:
      Université Grenoble Alpes: HAL
    • نبذة مختصرة :
      International audience ; This paper addresses the problem of analysing the performance of 3D face alignment (3DFA), or facial landmark localization. This task is usually supervised, based on annotated datasets. Nevertheless, in the particular case of 3DFA, the annotation process is rarely error-free, which strongly biases the results. Alternatively, unsupervised performance analysis (UPA) is investigated. The core ingredient of the proposed methodology is the robust estimation of the rigid transformation between predicted landmarks and model landmarks. It is shown that the rigid mapping thus computed is affected neither by non-rigid facial deformations, due to variabilities in expression and in identity, nor by landmark localization errors, due to various perturbations. The guiding idea is to apply the estimated rotation, translation and scale to a set of predicted landmarks in order to map them onto a mathematical home for the shape embedded in these landmarks (including possible errors). UPA proceeds as follows: (i) 3D landmarks are extracted from a 2D face using the 3DFA method under investigation; (ii) these landmarks are rigidly mapped onto a canonical (frontal) pose, and (iii) a statistically-robust confidence score is computed for each landmark. This allows to assess whether the mapped landmarks lie inside (inliers) or outside (outliers) a confidence volume. An experimental evaluation protocol, that uses publicly available datasets and several 3DFA software packages associated with published articles, is described in detail. The results show that the proposed analysis is consistent with supervised metrics and that it can be used to measure the accuracy of both predicted landmarks and of automatically annotated 3DFA datasets, to detect errors and to eliminate them. Source code and supplemental materials for this paper are publicly available at https://team.inria.fr/robotlearn/upa3dfa/.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2004.06550; info:eu-repo/grantAgreement//871245/EU/Socially Pertinent Robots in Gerontological Healthcare/SPRING; ARXIV: 2004.06550
    • الرقم المعرف:
      10.1016/j.neucom.2023.126941
    • الدخول الالكتروني :
      https://hal.science/hal-04265797
      https://hal.science/hal-04265797v1/document
      https://hal.science/hal-04265797v1/file/Sadeghi-Neurocomputing-arxiv.pdf
      https://doi.org/10.1016/j.neucom.2023.126941
    • Rights:
      http://hal.archives-ouvertes.fr/licences/publicDomain/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.7148637D