Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Non-parametric estimator of a multivariate madogram for missing-data and extreme value framework

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire Jean Alexandre Dieudonné (LJAD); Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA); Institut Montpelliérain Alexander Grothendieck (IMAG); Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM); Université de Montpellier (UM); Centre National de la Recherche Scientifique (CNRS); Littoral, Environment: MOdels and Numerics (LEMON); Inria Sophia Antipolis - Méditerranée (CRISAM); Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Montpelliérain Alexander Grothendieck (IMAG); Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Hydrosciences Montpellier (HSM); Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS); ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
    • بيانات النشر:
      HAL CCSD
      Elsevier
    • الموضوع:
      2022
    • Collection:
      HAL Université Côte d'Azur
    • نبذة مختصرة :
      International audience ; The modeling of dependence between maxima is an important subject in several applications in risk analysis. To this aim, the extreme value copula function, characterised via the madogram, can be used as a margin-free description of the dependence structure. From a practical point of view, the family of extreme value distributions is very rich and arise naturally as the limiting distribution of properly normalised component-wise maxima. In this paper, we investigate the nonparametric estimation of the madogram where data are completely missing at random. We provide the functional central limit theorem for the considered multivariate madrogram correctly normalized, towards a tight Gaussian process for which the covariance function depends on the probabilities of missing. Explicit formula for the asymptotic variance is also given. Our results are illustrated in a finite sample setting with a simulation study.
    • الرقم المعرف:
      10.1016/j.jmva.2022.105059
    • الدخول الالكتروني :
      https://hal.science/hal-03502804
      https://hal.science/hal-03502804v2/document
      https://hal.science/hal-03502804v2/file/multivariate_madogram_revision.pdf
      https://doi.org/10.1016/j.jmva.2022.105059
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.70E7CFFD