Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

CriticalMinds: Enhancing ML Models for ESG Impact Analysis Categorisation Using Linguistic Resources and Aspect-Based Sentiment Analysis

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Centre de recherches interdisciplinaires et transculturelles - UFC (UR 3224) (CRIT); Université de Franche-Comté (UFC); Université Bourgogne Franche-Comté COMUE (UBFC)-Université Bourgogne Franche-Comté COMUE (UBFC); Institut universitaire de France (IUF); Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.); Equipe de recherche de Lyon en sciences de l'information et de la communication (ELICO); Université Lumière - Lyon 2 (UL2)-École nationale supérieure des sciences de l'information et des bibliothèques (ENSSIB); Université de Lyon-Université de Lyon-Sciences Po Lyon - Institut d'études politiques de Lyon (IEP Lyon); Université de Lyon-Université Jean Moulin - Lyon 3 (UJML); Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon; Association for Computational Linguistics; ANR-21-CE38-0003,InSciM,Modélisation de l'incertitude en science(2021)
    • بيانات النشر:
      CCSD
    • الموضوع:
      2024
    • Collection:
      Portail HAL de l'Université Lumière Lyon 2
    • الموضوع:
    • نبذة مختصرة :
      International audience ; This paper presents our method and findings for the ML-ESG-3 shared task for categorising Environmental, Social, and Governance (ESG) impact level and duration. We introduce a comprehensive machine learning framework incorporating linguistic and semantic features to predict ESG impact levels and durations in English and French. Our methodology uses features that are derived from FastText embeddings, TF-IDF vectors, manually crafted linguistic resources, the ESG taxonomy, and aspect-based sentiment analysis (ABSA). We detail our approach, feature engineering process, model selection via grid search, and results. The best performance for this task was achieved by the Random Forest and XGBoost classifiers, with micro-F1 scores of 47.06 % and 65.44 % for English Impact level and Impact length, and 39.04 % and 54.79 % for French Impact level and Impact length respectively.
    • الدخول الالكتروني :
      https://hal.science/hal-04746055
      https://hal.science/hal-04746055v1/document
      https://hal.science/hal-04746055v1/file/2024.finnlp-1.26.pdf
    • Rights:
      http://creativecommons.org/licenses/by-nc/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.6FFE9C75