Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A Case Study on the 'Jungle' Search for Industry-Relevant Regression Testing

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Équipe Tolérance aux fautes et Sûreté de Fonctionnement informatique (LAAS-TSF); Laboratoire d'analyse et d'architecture des systèmes (LAAS); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse); Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT); Renault Software Factory
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2023
    • Collection:
      Université Toulouse 2 - Jean Jaurès: HAL
    • الموضوع:
    • نبذة مختصرة :
      International audience ; The optimization of regression testing (RT) has been widely studied in the literature, and numerous methodsexist. However, each context is unique. Therefore, how to tell which method is appropriate for a specific industrial context? Recent work has proposed a taxonomy to aid in answering this question. The approach is to map both the RT problem and existing solutions onto the taxonomy, aiming to determine which solutions are best aligned with the problem. This paper presents a case study that evaluates the approach in a real setting. The context is the development of R&D projects at a major automotive company, in the domain of connected vehicles. We used the taxonomy to characterize the RT problem in terms of measurable effects, and to identify the technically feasible solutions from a set of 52 papers. We report on the beneficial aspects but also the difficulties of the approach, due to unclear taxonomy elements, missing ones and paper classification errors.
    • Relation:
      hal-04294958; https://hal.science/hal-04294958; https://hal.science/hal-04294958/document; https://hal.science/hal-04294958/file/QRS_Jungle-7.pdf
    • الرقم المعرف:
      10.1109/QRS60937.2023.00045
    • الدخول الالكتروني :
      https://hal.science/hal-04294958
      https://hal.science/hal-04294958/document
      https://hal.science/hal-04294958/file/QRS_Jungle-7.pdf
      https://doi.org/10.1109/QRS60937.2023.00045
    • Rights:
      http://hal.archives-ouvertes.fr/licences/copyright/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.6FE38662