Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Assimilation of surface reflectance in snow simulations: Impact on bulk snow variables

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Centre national de recherches météorologiques (CNRM); Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP); Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS); Magellium; Institut des Géosciences de l’Environnement (IGE); Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP); Université Grenoble Alpes (UGA); ANR-16-CE01-0006,EBONI,Dépot, devenir et impact des impuretés absorbantes dans le manteau neigeux(2016)
    • بيانات النشر:
      CCSD
      Elsevier
    • الموضوع:
      2021
    • Collection:
      Institut national des sciences de l'Univers: HAL-INSU
    • نبذة مختصرة :
      International audience ; Data assimilation of snow observations significantly improves the accuracy of snow cover simulations. However, remotely-sensed snowpack observations made in areas of complex topography are typically subject to large error and biases, creating a challenge for data assimilation. To improve the reliability of ensemble snowpack simulations, this study investigated the appropriate conditions for assimilating MODIS-like synthetic surface reflectances. We used a simulation system that included the Particle Filter data assimilation technique. More than 270 ensemble simulations involving assimilation of synthetic observations were conducted in a twin experiment procedure for three snow seasons. These tests were aimed at establishing the spectral combination of MODIS-like reflectances that convey the more information in the assimilation system, rendering the most reliable snowpack simulation, and determining the maximum observation errors that the assimilation system could tolerate. The assimilation of the first seven MODIS-like bands, covering visible and near-infrared wavelengths, provided the best scores compared with any other band combination, and thus are highly recommended for use when possible. The simulation system tolerated a maximum deviation from ground truth of 5% without loss of performance. However, the assimilation of the first seven bands of true MODIS surface of reflectance fails on improving simulation results in rouged mountain areas.
    • الرقم المعرف:
      10.1016/j.jhydrol.2021.126966
    • الدخول الالكتروني :
      https://insu.hal.science/insu-03466311
      https://insu.hal.science/insu-03466311v1/document
      https://insu.hal.science/insu-03466311v1/file/1-s2.0-S0022169421010167-main.pdf
      https://doi.org/10.1016/j.jhydrol.2021.126966
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.6FB2181A