Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Assessing the optimal preprocessing steps of MODIS time series to map cropping systems in Mato Grosso, Brazil

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS); Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Universidade do Estado do Rio de Janeiro Brasil = Rio de Janeiro State University Brazil = Université d'État de Rio de Janeiro Brésil (UERJ); Département Environnements et Sociétés (Cirad-ES); Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad); Embrapa Solos; Ministério da Agricultura; Littoral, Environnement, Télédétection, Géomatique (LETG - Rennes); Littoral, Environnement, Télédétection, Géomatique UMR 6554 (LETG); Université de Caen Normandie (UNICAEN); Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École Pratique des Hautes Études (EPHE); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN); Université de Nantes (UN)-Université de Nantes (UN)-Université de Caen Normandie (UNICAEN); Université de Nantes (UN)-Université de Nantes (UN)
    • بيانات النشر:
      CCSD
      Elsevier
    • الموضوع:
      2020
    • Collection:
      Normandie Université: HAL
    • نبذة مختصرة :
      International audience ; The adoption of new cropping practices such as integrated Crop-Livestock systems (iCL) aims at improving the land use sustainability of the agricultural sector in the Brazilian Amazon. The emergence of such integrated systems, based on crop and pasture rotations over and within years, challenges the remote sensing community who needs to implement accurate and efficient methods to process satellite image time series (SITS) in order to come up with a monitoring protocol. These methods generally include a SITS preprocessing step which can be time consuming. The aim of this study is to assess the importance of preprocessing operations such as temporal smoothing and computation of phenological metrics on the mapping of main cropping systems (i.e. pasture, single cropping, double cropping and iCL), with a special emphasis on the iCL class. The study area is located in the state of Mato Grosso, an important producer of agriculture commodities located in the Southern Brazilian Amazon. SITS were composed of a set of 16-day composites of MODIS Vegetation Indices (MOD13Q1 product) covering a one year period between 2014 and 2015. Two widely used classifiers, i.e. Random Forest (RF) and Support Vector Machine (SVM), were tested using five data sets issued from a same SITS but with different preprocessing levels: (i) raw NDVI; (ii) raw NDVI + raw EVI; (iii) smoothed NDVI; (iv) NDVI-derived phenometrics; (v) raw NDVI + phenometrics. Both RF and SVM classification results showed that the "raw NDVI + raw EVI" data set achieved the highest performance (RF OA = 0.96, RF Kappa = 0.94, SVM OA = 0.95, SVM Kappa = 0.93), followed closely by the "raw NDVI" and the "raw NDVI + phenometrics" datasets. The "NDVIderived phenometrics" alone achieved the lowest accuracies (RF OA = 0.58 and SVM OA = 0.66). Considering that the implementation of preprocessing steps is computationally expensive and does not provide significant gains in terms of classification accuracy, we recommend to use raw vegetation indices for ...
    • Relation:
      WOS: 000550572100002
    • الرقم المعرف:
      10.1016/j.jag.2020.102150
    • الدخول الالكتروني :
      https://shs.hal.science/halshs-02868453
      https://shs.hal.science/halshs-02868453v1/document
      https://shs.hal.science/halshs-02868453v1/file/1-s2.0-S0303243419311225-main.pdf
      https://doi.org/10.1016/j.jag.2020.102150
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.6F281538