Contributors: Institut de biologie structurale (IBS - UMR 5075); Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG); Direction de Recherche Fondamentale (CEA) (DRF (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA); Institute of Microbiology of the Czech Academy of Sciences Prague, Czech Republic (MBU / CAS); Czech Academy of Sciences Prague (CAS); LIPID; Physiologie cellulaire et végétale (LPCV); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA); Adaptation au stress et Métabolisme chez les entérobactéries - Stress adaptation and metabolism in enterobacteria (SAMe); Université Paris Cité (UPCité)-Microbiologie Intégrative et Moléculaire (UMR6047); Institut Pasteur Paris (IP)-Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur Paris (IP)-Centre National de la Recherche Scientifique (CNRS); Integrated Structural Biology Grenoble (ISBG); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-European Molecular Biology Laboratory Grenoble (EMBL)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA); Nanobody Generation Platform de laboratoire AFMB (Marseille, France); Plateformes de Grenoble Instruct-ERIC center (ISBG; UAR 3518 CNRS-CEA-UGA-EMBL); LIPANG (Lipid analysis in Grenoble) hebergé par LPCV (UMR 5168 CNRS-CEA-INRAE-UGA); ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017); ANR-10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010); ANR-10-LABX-0049,GRAL,Grenoble Alliance for Integrated Structural Cell Biology(2010); European Project: 647784,H2020,ERC-2014-CoG,Chap4Resp(2015); European Project: 789385,RespViRALI; European Project: LX22NPO5103
نبذة مختصرة : International audience ; Enteric bacteria have to adapt to environmental stresses in the human gastrointestinal tract such as acid and nutrient stress, oxygen limitation and exposure to antibiotics. Membrane lipid composition has recently emerged as a key factor for stress adaptation. The E. coli ravA-viaA operon is essential for aminoglycoside bactericidal activity under anaerobiosis but its mechanism of action is unclear. Here we characterise the VWA domain-protein ViaA and its interaction with the AAA+ ATPase RavA, and find that both proteins localise at the inner cell membrane. We demonstrate that RavA and ViaA target specific phospholipids and subsequently identify their lipid-binding sites. We further show that mutations abolishing interaction with lipids restore induced changes in cell membrane morphology and lipid composition. Finally we reveal that these mutations render E. coli gentamicin-resistant under fumarate respiration conditions. Our work thus uncovers a ravA-viaA -based pathway which is mobilised in response to aminoglycosides under anaerobiosis and engaged in cell membrane regulation.
No Comments.