Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      BMC
    • الموضوع:
      2017
    • Collection:
      Directory of Open Access Journals: DOAJ Articles
    • نبذة مختصرة :
      Background Photosynthetic oleaginous microalgae are considered promising feedstocks for biofuels. The marine microalga, Nannochloropsis oceanica, has been attracting ever-increasing interest because of its fast growth, high triacylglycerol (TAG) content, and available genome sequence and genetic tools. Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step of TAG biosynthesis in the acyl-CoA-dependent pathway. Previous studies have identified 13 putative DGAT-encoding genes in the genome of N. oceanica, but the functional role of DGAT genes, especially type-I DGAT (DGAT1), remains ambiguous. Results Nannochloropsis oceanica IMET1 possesses two DGAT1 genes: NoDGAT1A and NoDGAT1B. Functional complementation demonstrated the capability of NoDGAT1A rather than NoDGAT1B to restore TAG synthesis in a TAG-deficient yeast strain. In vitro DGAT assays revealed that NoDGAT1A preferred saturated/monounsaturated acyl-CoAs and eukaryotic diacylglycerols (DAGs) for TAG synthesis, while NoDGAT1B had no detectable enzymatic activity. Assisted with green fluorescence protein (GFP) fusion, fluorescence microscopy analysis indicated the localization of NoDGAT1A in the chloroplast endoplasmic reticulum (cER) of N. oceanica. NoDGAT1A knockdown caused ~25% decline in TAG content upon nitrogen depletion, accompanied by the reduced C16:0, C18:0, and C18:1 in TAG sn-1/sn-3 positions and C18:1 in the TAG sn-2 position. NoDGAT1A overexpression, on the other hand, led to ~39% increase in TAG content upon nitrogen depletion, accompanied by the enhanced C16:0 and C18:1 in the TAG sn-1/sn-3 positions and C18:1 in the TAG sn-2 position. Interestingly, NoDGAT1A overexpression also promoted TAG accumulation (by ~2.4-fold) under nitrogen-replete conditions without compromising cell growth, and TAG yield of the overexpression line reached 0.49 g L−1 at the end of a 10-day batch culture, 47% greater than that of the control line. Conclusions Taken together, our work demonstrates the functional role of NoDGAT1A and ...
    • ISSN:
      1754-6834
    • Relation:
      http://link.springer.com/article/10.1186/s13068-017-0858-1; https://doaj.org/toc/1754-6834; https://doaj.org/article/0cfca237f709430dad83023868a56da3
    • الرقم المعرف:
      10.1186/s13068-017-0858-1
    • الدخول الالكتروني :
      https://doi.org/10.1186/s13068-017-0858-1
      https://doaj.org/article/0cfca237f709430dad83023868a56da3
    • الرقم المعرف:
      edsbas.6D55A436