Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Generalization Analysis of Machine Learning Algorithms via the Worst-Case Data-Generating Probability Measure

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Network Engineering and Operations (NEO); Inria Sophia Antipolis - Méditerranée (CRISAM); Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); Department of Electrical and Computer Engineering Princeton (ECE); Princeton University; Laboratoire de Géométrie Algébrique et Applications à la Théorie de l'Information (GAATI); Université de la Polynésie Française (UPF); Department of Automatic Control and Systems Engineering Sheffield (ACSE); University of Sheffield Sheffield; Laboratoire Informatique d'Avignon (LIA); Avignon Université (AU)-Centre d'Enseignement et de Recherche en Informatique - CERI; Laboratory of Information, Network and Communication Sciences (LINCS); Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Mines-Télécom Paris (IMT)-Sorbonne Université (SU); Inria Exploratory Action IDEM - Information and Decision Making; ANR-21-CE25-0013,PARFAIT,Planification et apprentissage pour AI-Edge Computing (PARFAIT)(2021)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2024
    • Collection:
      Université de la Polynésie française (upf): HAL
    • الموضوع:
    • الموضوع:
      Vancouver, Canada
    • نبذة مختصرة :
      International audience ; In this paper, the worst-case probability measure over the data is introduced as a tool for characterizing the generalization capabilities of machine learning algorithms. More specifically, the worst-case probability measure is a Gibbs probability measure and the unique solution to the maximization of the expected loss under a relative entropy constraint with respect to a reference probability measure. Fundamental generalization metrics, such as the sensitivity of the expected loss, the sensitivity of the empirical risk, and the generalization gap are shown to have closed-form expressions involving the worst-case data-generating probability measure. Existing results for the Gibbs algorithm, such as characterizing the generalization gap as a sum of mutual information and lautum information, up to a constant factor, are recovered. A novel parallel is established between the worst-case data-generating probability measure and the Gibbs algorithm. Specifically, the Gibbs probability measure is identified as a fundamental commonality of the model space and the data space for machine learning algorithms.
    • الرقم المعرف:
      10.1609/aaai.v38i15.29674
    • الدخول الالكتروني :
      https://inria.hal.science/hal-04353957
      https://inria.hal.science/hal-04353957v1/document
      https://inria.hal.science/hal-04353957v1/file/AAAI24camera_Hal.pdf
      https://doi.org/10.1609/aaai.v38i15.29674
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.6CC99416