Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

On the relations between stability optimization of linear time-delay systems and multiple rightmost characteristic roots

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Department of Computer Science - K.U.Leuven; Catholic University of Leuven = Katholieke Universiteit Leuven (KU Leuven); Dynamical Interconnected Systems in COmplex Environments (DISCO); Inria Saclay - Ile de France; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des signaux et systèmes (L2S); CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS); Laboratoire des signaux et systèmes (L2S); CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS); Institut Polytechnique des Sciences Avancées (IPSA)
    • بيانات النشر:
      HAL CCSD
      Springer Verlag
    • الموضوع:
      2024
    • نبذة مختصرة :
      International audience ; Several recent results on spectrum-based analysis and control of linear timeinvariant (LTI) time-delay system concern the characterization and exploitation of situations where the so-called multiplicity-induced dominancy property holds, that is, the higher multiplicity of a characteristic roots implies that it is a rightmost root. This direction of research is inspired by observed multiple roots after minimizing the spectral abscissa as a function of controller parameters. However, unlike the relation between multiple roots and rightmost roots, barely theoretical results about the relation of the former with minimizers of the spectral abscissa are available. Consequently, in the first part of the paper the characterization of rightmost roots in such mimimizers is briefly revisited for all second-order systems with input delay, controlled with state-feedback. As the main theoretical results, the governing multiple root configurations are proven to correspond not only to rightmost roots, but also to global minimizers of the spectrum abscissa function. The proofs rely on perturbation theory of nonlinear eigenvalue problems and exploit the quasi-convexity of the spectral abscissa function. In the second part, a computational characterization of minima of the spectral abscissa is made for output feedback, yielding a more complex picture, which includes configurations with both multiple and simple rightmost roots. In the analysis, the pivotal role of the invariant zeros is highlighted, which translate into restrictions on the tunable parameters in the closed-loop quasi-polynomial.
    • الرقم المعرف:
      10.1007/s00498-024-00398-1
    • الدخول الالكتروني :
      https://centralesupelec.hal.science/hal-04710724
      https://centralesupelec.hal.science/hal-04710724v1/document
      https://centralesupelec.hal.science/hal-04710724v1/file/Relations_between_minima_of_spectral_absciss_and_multiple_rightmost_characteristic_roots.pdf
      https://doi.org/10.1007/s00498-024-00398-1
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.6B8BF5A9