Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Minimal area of Finsler disks with minimizing geodesics

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Département de Mathématiques - EPFL; Ecole Polytechnique Fédérale de Lausanne (EPFL); Laboratoire Analyse et de Mathématiques Appliquées (LAMA); Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel; International Research Lab (IRL CRM-CNRS); Centre de Recherches Mathématiques Montréal (CRM); Université de Montréal (UdeM)-Université de Montréal (UdeM)-Centre National de la Recherche Scientifique (CNRS); ANR-10-LABX-0058,Bézout,Models and algorithms: from the discrete to the continuous(2010); ANR-19-CE40-0014,Min-Max,Constructions de min-max en géométrie et topologie(2019)
    • بيانات النشر:
      HAL CCSD
      European Mathematical Society
    • الموضوع:
      2024
    • نبذة مختصرة :
      International audience ; We show that the Holmes-Thompson area of every Finsler disk of radius r whose interior geodesics are length-minimizing is at least 6/π r^2. Furthermore, we construct examples showing that the inequality is sharp and observe that the equality case is attained by a non-rotationally symmetric metric. This contrasts with Berger's conjecture in the Riemannian case, which asserts that the round hemisphere is extremal. To prove our theorem we discretize the Finsler metric using random geodesics. As an auxiliary result, we show that the integral geometry formulas of Blaschke and Santaló hold on Finsler manifolds with almost no trapped geodesics.
    • الرقم المعرف:
      10.4171/JEMS/1339
    • الدخول الالكتروني :
      https://hal.science/hal-03961993
      https://hal.science/hal-03961993v1/document
      https://hal.science/hal-03961993v1/file/simple_finsler.pdf
      https://doi.org/10.4171/JEMS/1339
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.6A3F4433