Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Online Input Data Reduction in Scientific Workflows

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE-UFRJ); Universidade Federal do Rio de Janeiro Brasil = Federal University of Rio de Janeiro Brazil = Université fédérale de Rio de Janeiro Brésil (UFRJ); Institut de Biologie Computationnelle (IBC); Institut National de la Recherche Agronomique (INRA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS); Scientific Data Management (ZENITH); Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM); Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM); Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); ACM SIGHPC; IEEE; FAPERJ-Inria MUSIC; European Project: 689772,H2020 Pilier Industrial Leadership,H2020-EUB-2015,HPC4E(2015)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2016
    • Collection:
      Université de Rennes 1: Publications scientifiques (HAL)
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Many scientific workflows are data-intensive and need be iteratively executed for large input sets of data elements. Reducing input data is a powerful way to reduce overall execution time in such workflows. When this is accomplished online (i.e., without requiring users to stop execution to reduce the data and resume execution), it can save much time and user interactions can integrate within workflow execution. Then, a major problem is to determine which subset of the input data should be removed. Other related problems include guaranteeing that the workflow system will maintain execution and data consistent after reduction, and keeping track of how users interacted with execution. In this paper, we adopt the approach " human-in-the-loop " for scientific workflows by enabling users to steer the workflow execution and reduce input elements from datasets at runtime. We propose an adaptive monitoring approach that combines workflow provenance monitoring and computational steering to support users in analyzing the evolution of key parameters and determining which subset of the data should be removed. We also extend a provenance data model to keep track of user interactions when users reduce data at runtime. In our experimental validation, we develop a test case from the oil and gas industry, using a 936-cores cluster. The results on our parameter sweep test case show that the user interactions for online data reduction yield a 37% reduction of execution time.
    • Relation:
      info:eu-repo/grantAgreement//689772/EU/HPC for Energy/HPC4E; lirmm-01400538; https://hal-lirmm.ccsd.cnrs.fr/lirmm-01400538; https://hal-lirmm.ccsd.cnrs.fr/lirmm-01400538/document; https://hal-lirmm.ccsd.cnrs.fr/lirmm-01400538/file/WORKS%202016.pdf
    • الدخول الالكتروني :
      https://hal-lirmm.ccsd.cnrs.fr/lirmm-01400538
      https://hal-lirmm.ccsd.cnrs.fr/lirmm-01400538/document
      https://hal-lirmm.ccsd.cnrs.fr/lirmm-01400538/file/WORKS%202016.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.69E84080