Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Emulating the adaptation of wind fields to complex terrain with deep-learning

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Centre d'Etudes de la Neige (CEN); Centre national de recherches météorologiques (CNRM); Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP); Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA); SLF Institut pour l'étude de la neige et des avalanches (SLF); SLF; Statistique pour le Vivant et l’Homme (SVH); Laboratoire Jean Kuntzmann (LJK); Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP); Université Grenoble Alpes (UGA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP); Université Grenoble Alpes (UGA)
    • بيانات النشر:
      CCSD
      American Meteorological Society
    • الموضوع:
      2023
    • Collection:
      Institut national des sciences de l'Univers: HAL-INSU
    • نبذة مختصرة :
      International audience ; Estimating the impact of wind-driven snow transport requires modeling wind fields with a lower grid spacing than the spacing on the order of one or a few kilometers used in the current numerical weather prediction (NWP) systems. In this context, we introduce a new strategy to downscale wind fields from NWP systems to decametric scales, using high resolution (30m) topographic information. Our method (named DEVINE) leverage on a convolutional neural network (CNN), trained to replicate the behaviour of the complex atmospheric model ARPS, previously run on a large number (7279) of synthetic Gaussian topographies under controlled weather conditions. A 10-fold cross validation reveals that our CNN is able to accurately emulate the behavior of ARPS (mean absolute error for wind speed = 0.16 m/s). We then apply DEVINE to real cases in the Alps, i.e. downscaling wind fields forecasted by AROME NWP system using information from real alpine topographies. DEVINE proved able to reproduce main features of wind fields in complex terrain (acceleration on ridges, leeward deceleration, deviations around obstacles). Furthermore, an evaluation on quality checked observations acquired at 61 sites in the French Alps reveals an improved behaviour of the downscaled winds (AROME wind speed mean bias is reduced by 27% with DEVINE), especially at the most elevated and exposed stations. Wind direction is however only slightly modified. Hence, despite some current limitations inherited from the ARPS simulations setup, DEVINE appears as an efficient downscaling tool whose minimalist architecture, low input data requirements (NWP wind fields and high-resolution topography) and competitive computing times may be attractive for operational applications.
    • الرقم المعرف:
      10.1175/AIES-D-22-0034.1
    • الدخول الالكتروني :
      https://hal.science/hal-03930087
      https://hal.science/hal-03930087v1/document
      https://hal.science/hal-03930087v1/file/aies-AIES-D-22-0034.1-1.pdf
      https://doi.org/10.1175/AIES-D-22-0034.1
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.6924054A