Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Improving Diabetes-Related Biomedical Literature Exploration in the Clinical Decision-making Process via Interactive Classification and Topic Discovery: Methodology Development Study

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      EpiConcept Paris; Centre de recherche en épidémiologie et santé des populations (CESP); Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Paul Brousse-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay; Mode de vie, génétique et santé : études intégratives et transgénérationnelles (U1018 (Équipe 9)); Institut Gustave Roussy (IGR)-Centre de recherche en épidémiologie et santé des populations (CESP); Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Paul Brousse-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Paul Brousse-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay; Luxembourg Institute of Health (LIH); Laboratoire d'Informatique Médicale et Ingénierie des Connaissances en e-Santé (LIMICS); Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Sorbonne Paris Nord
    • بيانات النشر:
      HAL CCSD
      JMIR Publications
    • الموضوع:
      2022
    • Collection:
      Université Paris 13: HAL
    • نبذة مختصرة :
      International audience ; Background: The amount of available textual health data such as scientific and biomedical literature is constantly growing and becoming more and more challenging for health professionals to properly summarize those data and practice evidence-based clinical decision making. Moreover, the exploration of unstructured health text data is challenging for professionals without computer science knowledge due to limited time, resources, and skills. Current tools to explore text data lack ease of use, require high computational efforts, and incorporate domain knowledge and focus on topics of interest with difficulty.Objective: We developed a methodology able to explore and target topics of interest via an interactive user interface for health professionals with limited computer science knowledge. We aim to reach near state-of-the-art performance while reducing memory consumption, increasing scalability, and minimizing user interaction effort to improve the clinical decision-making process. The performance was evaluated on diabetes-related abstracts from PubMed.Methods: The methodology consists of 4 parts: (1) a novel interpretable hierarchical clustering of documents where each node is defined by headwords (words that best represent the documents in the node), (2) an efficient classification system to target topics, (3) minimized user interaction effort through active learning, and (4) a visual user interface. We evaluated our approach on 50,911 diabetes-related abstracts providing a hierarchical Medical Subject Headings (MeSH) structure, a unique identifier for a topic. Hierarchical clustering performance was compared against the implementation in the machine learning library scikit-learn. On a subset of 2000 randomly chosen diabetes abstracts, our active learning strategy was compared against 3 other strategies: random selection of training instances, uncertainty sampling that chooses instances about which the model is most uncertain, and an expected gradient length strategy based on ...
    • Relation:
      hal-03534513; https://hal.sorbonne-universite.fr/hal-03534513; https://hal.sorbonne-universite.fr/hal-03534513/document; https://hal.sorbonne-universite.fr/hal-03534513/file/document%281%29.pdf
    • الرقم المعرف:
      10.2196/27434
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.687FA695