Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Pull your treebank up by its own bootstraps

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire Interdisciplinaire des Sciences du Numérique (LISN); Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS); Modèles, Dynamiques, Corpus (MoDyCo); Université Paris Nanterre (UPN)-Centre National de la Recherche Scientifique (CNRS); Becerra, Leonor; Favre, Benoît; Gardent, Claire; Parmentier, Yannick
    • بيانات النشر:
      HAL CCSD
      CNRS
    • الموضوع:
      2022
    • الموضوع:
    • نبذة مختصرة :
      National audience ; We analyze the performance of recent neural syntactic parsers in the task of bootstrapping a treebank, i.e. training and analyzing iteratively in order to enhance speed and quality of the human syntactic analysis. By conducting an extensive and heuristically guided search in the vast grid of options (parser, embedding, configuration, epochs, batch size, size of training set, annotation scheme, language, evaluation method…), we determine the best performing parser configurations: UDify and Trankit share the podium depending on the size of the training set. We also show how these results are integrated into the annotation tool ArboratorGrew, and we propose some preliminary measures that allow predicting the quality of the parse for a new language.
    • Relation:
      hal-03846834; https://hal.science/hal-03846834; https://hal.science/hal-03846834/document; https://hal.science/hal-03846834/file/504.pdf
    • الدخول الالكتروني :
      https://hal.science/hal-03846834
      https://hal.science/hal-03846834/document
      https://hal.science/hal-03846834/file/504.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.6847B6C2