Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Magnetometric resistivity: a new approach and its application to the detection of preferential flow paths in mine waste rock dumps

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Willowstick Technologies; Morphodynamique Continentale et Côtière (M2C); Université de Caen Normandie (UNICAEN); Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rouen Normandie (UNIROUEN); Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS); Institut des Sciences de la Terre (ISTerre); Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement IRD : UR219-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
    • بيانات النشر:
      HAL CCSD
      Oxford University Press (OUP)
    • الموضوع:
      2018
    • Collection:
      Institut national des sciences de l'Univers: HAL-INSU
    • نبذة مختصرة :
      (IF 2.78; Q1) ; International audience ; The injection of a low frequency electrical current in the ground between two electrodes A and B generates a magnetic field that can be measured at the ground surface with sensitive magnetic sensors. The map of the magnetic field, measured at the frequency of the injected current, can be used to determine the paths of the current through the ground. When the current is channelled along preferential conductive paths, the MagnetoMetric Resistivity (MMR) method can be used to detect these paths. Conductive current paths can be associated with preferential flow paths of groundwater when the two electrodes A and B are in the direction of the flow and when the flow path is highly electrically conductive with respect to the background. We first review the background equations for the magnetic field in MMR. Then, we provide the kernel of the problem using Biot and Savart law to connect the components of the observed magnetic field to the current density distribution. We also develop a simple approach to invert the magnetic field in terms of electrical current paths. To illustrate how the method works, we develop five synthetic models to test the sensitivity of the method to the properties of the conductive targets channelling the electrical current. The targets are characterized by different shapes, sizes, depths, and conductivity contrasts with the background. Then, we proceed with a case study for which the MMR method is used to identify and map preferential groundwater flow paths bypassing a mine waste rock dump drainage collection trench into the tailings pond. In this case, the conductivity of the flow paths is much stronger than the background conductivity due to the high mineralization of the ground water along these paths. The method underlines the 3-D architecture of these flow paths.
    • Relation:
      hal-02324208; https://hal.science/hal-02324208; https://hal.science/hal-02324208/document; https://hal.science/hal-02324208/file/2018-GJI-MMR%20approach.pdf
    • الرقم المعرف:
      10.1093/gji/ggy275
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.665178D1