Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Learning interactions between cardiac shape and deformation: application to pulmonary hypertension

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS); Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS); Modeling & analysis for medical imaging and Diagnosis (MYRIAD); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL); Service de Cardiologie CHU de Nice; Centre Hospitalier Universitaire de Nice (CHU Nice); COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2019
    • Collection:
      HAL Université Côte d'Azur
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Cardiac shape and deformation are two relevant descriptors for the characterization of cardiovascular diseases. It is also known that strong interactions exist between them depending on the disease. In clinical routine, these high dimensional descriptors are reduced to scalar values (ventricular ejection fraction, volumes, global strains.), leading to a substantial loss of information. Methods exist to better integrate these high-dimensional data by reducing the dimension and mixing heterogeneous descriptors. Nevertheless, they usually do not consider the interactions between the descriptors. In this paper, we propose to apply dimensionality reduction on high dimensional cardiac shape and deformation descriptors and take into account their interactions. We investigated two unsupervised linear approaches, an individual analysis of each feature (Principal Component Analysis), and a joint analysis of both features (Partial Least Squares) and related their output to the main characteristics of the studied pathology. We experimented both methods on right ventricular meshes from a population of 254 cases tracked along the cycle (154 with pulmonary hypertension, 100 controls). Despite similarities in the output space obtained by the two methods, substantial differences are observed in the reconstructed shape and deformation patterns along the principal modes of variation, in particular in regions of interest for the studied disease.
    • Relation:
      hal-02309296; https://hal.science/hal-02309296; https://hal.science/hal-02309296/document; https://hal.science/hal-02309296/file/cdifolco_stacom_2019ok.pdf
    • الدخول الالكتروني :
      https://hal.science/hal-02309296
      https://hal.science/hal-02309296/document
      https://hal.science/hal-02309296/file/cdifolco_stacom_2019ok.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.6601F005