Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Contribution of lateral gene transfers to the genome composition and parasitic ability of root-knot nematodes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire d'Analyse, Topologie, Probabilités (LATP); Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS); Institut Sophia Agrobiotech (ISA); Institut National de la Recherche Agronomique (INRA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS); Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE); Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS); Programme CNRS 'Maladies Infectieuses Emergentes'; ANR-08-GENM-0012,NEMATARGETS,Identification de nouveaux gènes-cibles pour le développement de stratégies spécifiques dirigées contre les nématodes parasites de plantes(2008)
    • بيانات النشر:
      CCSD
      Public Library of Science
    • الموضوع:
      2012
    • Collection:
      HAL Université Côte d'Azur
    • نبذة مختصرة :
      International audience ; Lateral gene transfers (LGT), species to species transmission of genes by means other than direct inheritance from a common ancestor, have played significant role in shaping prokaryotic genomes and are involved in gain or transfer of important biological processes. Whether LGT significantly contributed to the composition of an animal genome is currently unclear. In nematodes, multiple LGT are suspected to have favored emergence of plant-parasitism. With the availability of whole genome sequences it is now possible to assess whether LGT have significantly contributed to the composition of an animal genome and to establish a comprehensive list of these events. We generated clusters of homologous genes and automated phylogenetic inference, to detect LGT in the genomes of root-knot nematodes and found that up to 3.34% of the genes originate from LGT of non-metazoan origin. After their acquisition, the majority of genes underwent series of duplications. Compared to the rest of the genes in these species, several predicted functional categories showed a skewed distribution in the set of genes acquired via LGT. Interestingly, functions related to metabolism, degradation or modification of carbohydrates or proteins were substantially more frequent. This suggests that genes involved in these processes, related to a parasitic lifestyle, have been more frequently fixed in these parasites after their acquisition. Genes from soil bacteria, including plant-pathogens were the most frequent closest relatives, suggesting donors were preferentially bacteria from the rhizosphere. Several of these bacterial genes are plasmid-borne, pointing to a possible role of these mobile genetic elements in the transfer mechanism. Our analysis provides the first comprehensive description of the ensemble of genes of non-metazoan origin in an animal genome. Besides being involved in important processes regarding plant-parasitism, genes acquired via LGT now constitute a substantial proportion of protein-coding genes in ...
    • Relation:
      info:eu-repo/semantics/altIdentifier/pmid/23226415; PRODINRA: 183281; PUBMED: 23226415; WOS: 000312376100226
    • الرقم المعرف:
      10.1371/journal.pone.0050875
    • الدخول الالكتروني :
      https://hal.science/hal-00831026
      https://hal.science/hal-00831026v1/document
      https://hal.science/hal-00831026v1/file/journal.pone.0050875.PDF
      https://doi.org/10.1371/journal.pone.0050875
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.65E78844