Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Digital Image Correlation and Finite Element Computation to Reveal Mechanical Anisotropy in 3D Printing of Polymers

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA); Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Université de Sfax - University of Sfax; Laboratoire de génie des procédés - environnement - agroalimentaire (GEPEA); École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST); Nantes Université - pôle Sciences et technologie; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - Institut Universitaire de Technologie Saint-Nazaire (Nantes Univ - IUT Saint-Nazaire); Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)
    • بيانات النشر:
      HAL CCSD
      MDPI
    • الموضوع:
      2022
    • Collection:
      Institut National de la Recherche Agronomique: ProdINRA
    • نبذة مختصرة :
      International audience ; In this study, we propose to revisit the mechanical anisotropy inferred to printed ABS polymers using fused deposition modelling by combining digital image correlation (DIC), mechanical testing and finite element computation. Tensile specimens are printed using different design orientations and raster angles. Monitoring of deformed samples is performed, and strain fields are derived for each configuration. Finite element modelling of the 3D-printed material behaviour is considered to shed more light on deformation mechanisms. Experimental results show that a heterogeneous strain field develops, leading to more significant strain localisation for samples printed with the main dimension aligned with the building direction. The optimal printing angle allowing the filament to be crossed at −45°/+45° shows the best behaviour with even larger elongation at break compared to the raw material. However, digital image correlation based on optical imaging shows that a limiting scale exists for revealing the effect of filament orientation on strain localisation. Finite element results reveal the nature of the strain localisation as related presence of porosity close to the frame and the development of asymmetrical filling within the printed structure.
    • Relation:
      info:eu-repo/semantics/altIdentifier/pmid/36499877; hal-04132941; https://hal.inrae.fr/hal-04132941; https://hal.inrae.fr/hal-04132941/document; https://hal.inrae.fr/hal-04132941/file/2022_Guessasma_Materials.pdf; PUBMED: 36499877; WOS: 000897342700001
    • الرقم المعرف:
      10.3390/ma15238382
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.65DA12B2