Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Random forest estimation of conditional distribution functions and conditional quantiles

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Probabilités, statistique, physique mathématique (PSPM); Institut Camille Jordan (ICJ); École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS); SCOR - Group Actuarial Department - Actuarial Modelling
    • بيانات النشر:
      HAL CCSD
      Institute of Mathematical Statistics
    • الموضوع:
      2022
    • Collection:
      Université de Lyon: HAL
    • نبذة مختصرة :
      International audience ; We propose a theoretical study of two realistic estimators of conditional distribution functions and conditional quantiles using random forests. The estimation process uses the bootstrap samples generated from the original dataset when constructing the forest. Bootstrap samples are reused to define the first estimator, while the second requires only the original sample, once the forest has been built. We prove that both proposed estimators of the conditional distribution functions are consistent uniformly a.s. To the best of our knowledge, it is the first proof of consistency including the bootstrap part. We also illustrate the estimation procedures on a numerical example.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2006.06998; hal-02733460; https://hal.science/hal-02733460; https://hal.science/hal-02733460v5/document; https://hal.science/hal-02733460v5/file/Published_Cond_RF_EJS.pdf; ARXIV: 2006.06998
    • الرقم المعرف:
      10.1214/22-EJS2094
    • الدخول الالكتروني :
      https://hal.science/hal-02733460
      https://hal.science/hal-02733460v5/document
      https://hal.science/hal-02733460v5/file/Published_Cond_RF_EJS.pdf
      https://doi.org/10.1214/22-EJS2094
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.64FDB40D